Kaizouku's picture
Upload 564 files
2260825 verified
import numpy as np
from ..file_utils import add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
@add_end_docstrings(
PIPELINE_INIT_ARGS,
r"""
return_all_scores (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to return all prediction scores or just the one of the predicted class.
""",
)
class TextClassificationPipeline(Pipeline):
"""
Text classification pipeline using any :obj:`ModelForSequenceClassification`. See the `sequence classification
examples <../task_summary.html#sequence-classification>`__ for more information.
This text classification pipeline can currently be loaded from :func:`~transformers.pipeline` using the following
task identifier: :obj:`"sentiment-analysis"` (for classifying sequences according to positive or negative
sentiments).
If multiple classification labels are available (:obj:`model.config.num_labels >= 2`), the pipeline will run a
softmax over the results. If there is a single label, the pipeline will run a sigmoid over the result.
The models that this pipeline can use are models that have been fine-tuned on a sequence classification task. See
the up-to-date list of available models on `huggingface.co/models
<https://huggingface.co/models?filter=text-classification>`__.
"""
def __init__(self, return_all_scores: bool = False, **kwargs):
super().__init__(**kwargs)
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
)
self.return_all_scores = return_all_scores
def __call__(self, *args, **kwargs):
"""
Classify the text(s) given as inputs.
Args:
args (:obj:`str` or :obj:`List[str]`):
One or several texts (or one list of prompts) to classify.
Return:
A list or a list of list of :obj:`dict`: Each result comes as list of dictionaries with the following keys:
- **label** (:obj:`str`) -- The label predicted.
- **score** (:obj:`float`) -- The corresponding probability.
If ``self.return_all_scores=True``, one such dictionary is returned per label.
"""
outputs = super().__call__(*args, **kwargs)
if self.model.config.num_labels == 1:
scores = 1.0 / (1.0 + np.exp(-outputs))
else:
scores = np.exp(outputs) / np.exp(outputs).sum(-1, keepdims=True)
if self.return_all_scores:
return [
[{"label": self.model.config.id2label[i], "score": score.item()} for i, score in enumerate(item)]
for item in scores
]
else:
return [
{"label": self.model.config.id2label[item.argmax()], "score": item.max().item()} for item in scores
]