Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2020 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Tensorflow mT5 model. """ | |
from ...utils import logging | |
from ..t5.modeling_tf_t5 import TFT5EncoderModel, TFT5ForConditionalGeneration, TFT5Model | |
from .configuration_mt5 import MT5Config | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "T5Config" | |
_TOKENIZER_FOR_DOC = "T5Tokenizer" | |
class TFMT5Model(TFT5Model): | |
r""" | |
This class overrides :class:`~transformers.TFT5Model`. Please check the superclass for the appropriate | |
documentation alongside usage examples. | |
Examples:: | |
>>> from transformers import TFMT5Model, T5Tokenizer | |
>>> model = TFMT5Model.from_pretrained("google/mt5-small") | |
>>> tokenizer = T5Tokenizer.from_pretrained("google/mt5-small") | |
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." | |
>>> summary = "Weiter Verhandlung in Syrien." | |
>>> inputs = tokenizer(article, return_tensors="tf") | |
>>> with tokenizer.as_target_tokenizer(): | |
... labels = tokenizer(summary, return_tensors="tf") | |
>>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"]) | |
>>> hidden_states = outputs.last_hidden_state | |
""" | |
model_type = "mt5" | |
config_class = MT5Config | |
class TFMT5ForConditionalGeneration(TFT5ForConditionalGeneration): | |
r""" | |
This class overrides :class:`~transformers.TFT5ForConditionalGeneration`. Please check the superclass for the | |
appropriate documentation alongside usage examples. | |
Examples:: | |
>>> from transformers import TFMT5ForConditionalGeneration, T5Tokenizer | |
>>> model = TFMT5ForConditionalGeneration.from_pretrained("google/mt5-small") | |
>>> tokenizer = T5Tokenizer.from_pretrained("google/mt5-small") | |
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." | |
>>> summary = "Weiter Verhandlung in Syrien." | |
>>> inputs = tokenizer(article, return_tensors="tf") | |
>>> with tokenizer.as_target_tokenizer(): | |
... labels = tokenizer(summary, return_tensors="tf") | |
>>> outputs = model(**inputs,labels=labels["input_ids"]) | |
>>> loss = outputs.loss | |
""" | |
model_type = "mt5" | |
config_class = MT5Config | |
class TFMT5EncoderModel(TFT5EncoderModel): | |
r""" | |
This class overrides :class:`~transformers.TFT5EncoderModel`. Please check the superclass for the appropriate | |
documentation alongside usage examples. | |
Examples:: | |
>>> from transformers import TFMT5EncoderModel, T5Tokenizer | |
>>> model = TFMT5EncoderModel.from_pretrained("google/mt5-small") | |
>>> tokenizer = T5Tokenizer.from_pretrained("google/mt5-small") | |
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." | |
>>> input_ids = tokenizer(article, return_tensors="tf").input_ids | |
>>> outputs = model(input_ids) | |
>>> hidden_state = outputs.last_hidden_state | |
""" | |
model_type = "mt5" | |
config_class = MT5Config | |