Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Fast Tokenization classes for MPNet.""" | |
import json | |
from typing import List, Optional, Tuple | |
from tokenizers import normalizers | |
from ...tokenization_utils import AddedToken | |
from ...tokenization_utils_fast import PreTrainedTokenizerFast | |
from ...utils import logging | |
from .tokenization_mpnet import MPNetTokenizer | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} | |
PRETRAINED_VOCAB_FILES_MAP = { | |
"vocab_file": { | |
"microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/vocab.txt", | |
}, | |
"tokenizer_file": { | |
"microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/tokenizer.json", | |
}, | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
"microsoft/mpnet-base": 512, | |
} | |
PRETRAINED_INIT_CONFIGURATION = { | |
"microsoft/mpnet-base": {"do_lower_case": True}, | |
} | |
class MPNetTokenizerFast(PreTrainedTokenizerFast): | |
r""" | |
Construct a "fast" MPNet tokenizer (backed by HuggingFace's `tokenizers` library). Based on WordPiece. | |
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main | |
methods. Users should refer to this superclass for more information regarding those methods. | |
Args: | |
vocab_file (:obj:`str`): | |
File containing the vocabulary. | |
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Whether or not to lowercase the input when tokenizing. | |
bos_token (:obj:`str`, `optional`, defaults to :obj:`"<s>"`): | |
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. | |
.. note:: | |
When building a sequence using special tokens, this is not the token that is used for the beginning of | |
sequence. The token used is the :obj:`cls_token`. | |
eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): | |
The end of sequence token. | |
.. note:: | |
When building a sequence using special tokens, this is not the token that is used for the end of | |
sequence. The token used is the :obj:`sep_token`. | |
sep_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): | |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for | |
sequence classification or for a text and a question for question answering. It is also used as the last | |
token of a sequence built with special tokens. | |
cls_token (:obj:`str`, `optional`, defaults to :obj:`"<s>"`): | |
The classifier token which is used when doing sequence classification (classification of the whole sequence | |
instead of per-token classification). It is the first token of the sequence when built with special tokens. | |
unk_token (:obj:`str`, `optional`, defaults to :obj:`"[UNK]"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`): | |
The token used for padding, for example when batching sequences of different lengths. | |
mask_token (:obj:`str`, `optional`, defaults to :obj:`"<mask>"`): | |
The token used for masking values. This is the token used when training this model with masked language | |
modeling. This is the token which the model will try to predict. | |
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see `this | |
issue <https://github.com/huggingface/transformers/issues/328>`__). | |
strip_accents: (:obj:`bool`, `optional`): | |
Whether or not to strip all accents. If this option is not specified, then it will be determined by the | |
value for :obj:`lowercase` (as in the original BERT). | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
slow_tokenizer_class = MPNetTokenizer | |
model_input_names = ["input_ids", "attention_mask"] | |
def __init__( | |
self, | |
vocab_file=None, | |
tokenizer_file=None, | |
do_lower_case=True, | |
bos_token="<s>", | |
eos_token="</s>", | |
sep_token="</s>", | |
cls_token="<s>", | |
unk_token="[UNK]", | |
pad_token="<pad>", | |
mask_token="<mask>", | |
tokenize_chinese_chars=True, | |
strip_accents=None, | |
**kwargs | |
): | |
super().__init__( | |
vocab_file, | |
tokenizer_file=tokenizer_file, | |
do_lower_case=do_lower_case, | |
bos_token=bos_token, | |
eos_token=eos_token, | |
sep_token=sep_token, | |
cls_token=cls_token, | |
unk_token=unk_token, | |
pad_token=pad_token, | |
mask_token=mask_token, | |
tokenize_chinese_chars=tokenize_chinese_chars, | |
strip_accents=strip_accents, | |
**kwargs, | |
) | |
pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) | |
if ( | |
pre_tok_state.get("lowercase", do_lower_case) != do_lower_case | |
or pre_tok_state.get("strip_accents", strip_accents) != strip_accents | |
): | |
pre_tok_class = getattr(normalizers, pre_tok_state.pop("type")) | |
pre_tok_state["lowercase"] = do_lower_case | |
pre_tok_state["strip_accents"] = strip_accents | |
self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state) | |
self.do_lower_case = do_lower_case | |
def mask_token(self) -> str: | |
""" | |
:obj:`str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while | |
not having been set. | |
MPNet tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily | |
comprise the space before the `<mask>`. | |
""" | |
if self._mask_token is None and self.verbose: | |
logger.error("Using mask_token, but it is not set yet.") | |
return None | |
return str(self._mask_token) | |
def mask_token(self, value): | |
""" | |
Overriding the default behavior of the mask token to have it eat the space before it. | |
This is needed to preserve backward compatibility with all the previously used models based on MPNet. | |
""" | |
# Mask token behave like a normal word, i.e. include the space before it | |
# So we set lstrip to True | |
value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value | |
self._mask_token = value | |
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): | |
output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] | |
if token_ids_1 is None: | |
return output | |
return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. MPNet does not | |
make use of token type ids, therefore a list of zeros is returned | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of ids. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs | |
Returns: | |
:obj:`List[int]`: List of zeros. | |
""" | |
sep = [self.sep_token_id] | |
cls = [self.cls_token_id] | |
if token_ids_1 is None: | |
return len(cls + token_ids_0 + sep) * [0] | |
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
files = self._tokenizer.model.save(save_directory, name=filename_prefix) | |
return tuple(files) | |