Spaces:
Sleeping
Sleeping
| # coding=utf-8 | |
| # Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """PyTorch MPNet model. """ | |
| import math | |
| import torch | |
| from torch import nn | |
| from torch.nn import CrossEntropyLoss, MSELoss | |
| from ...activations import ACT2FN, gelu | |
| from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward | |
| from ...modeling_outputs import ( | |
| BaseModelOutput, | |
| BaseModelOutputWithPooling, | |
| MaskedLMOutput, | |
| MultipleChoiceModelOutput, | |
| QuestionAnsweringModelOutput, | |
| SequenceClassifierOutput, | |
| TokenClassifierOutput, | |
| ) | |
| from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer | |
| from ...utils import logging | |
| from .configuration_mpnet import MPNetConfig | |
| logger = logging.get_logger(__name__) | |
| _CHECKPOINT_FOR_DOC = "microsoft/mpnet-base" | |
| _CONFIG_FOR_DOC = "MPNetConfig" | |
| _TOKENIZER_FOR_DOC = "MPNetTokenizer" | |
| MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "microsoft/mpnet-base", | |
| ] | |
| class MPNetPreTrainedModel(PreTrainedModel): | |
| config_class = MPNetConfig | |
| pretrained_model_archive_map = MPNET_PRETRAINED_MODEL_ARCHIVE_LIST | |
| base_model_prefix = "mpnet" | |
| def _init_weights(self, module): | |
| """Initialize the weights""" | |
| if isinstance(module, nn.Linear): | |
| # Slightly different from the TF version which uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| elif isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| class MPNetEmbeddings(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.padding_idx = 1 | |
| self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.padding_idx) | |
| self.position_embeddings = nn.Embedding( | |
| config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx | |
| ) | |
| self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) | |
| def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, **kwargs): | |
| if position_ids is None: | |
| if input_ids is not None: | |
| position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx) | |
| else: | |
| position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) | |
| if input_ids is not None: | |
| input_shape = input_ids.size() | |
| else: | |
| input_shape = inputs_embeds.size()[:-1] | |
| seq_length = input_shape[1] | |
| if position_ids is None: | |
| position_ids = self.position_ids[:, :seq_length] | |
| if inputs_embeds is None: | |
| inputs_embeds = self.word_embeddings(input_ids) | |
| position_embeddings = self.position_embeddings(position_ids) | |
| embeddings = inputs_embeds + position_embeddings | |
| embeddings = self.LayerNorm(embeddings) | |
| embeddings = self.dropout(embeddings) | |
| return embeddings | |
| def create_position_ids_from_inputs_embeds(self, inputs_embeds): | |
| """ | |
| We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. | |
| Args: | |
| inputs_embeds: torch.Tensor | |
| Returns: torch.Tensor | |
| """ | |
| input_shape = inputs_embeds.size()[:-1] | |
| sequence_length = input_shape[1] | |
| position_ids = torch.arange( | |
| self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device | |
| ) | |
| return position_ids.unsqueeze(0).expand(input_shape) | |
| class MPNetSelfAttention(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
| raise ValueError( | |
| f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
| f"heads ({config.num_attention_heads})" | |
| ) | |
| self.num_attention_heads = config.num_attention_heads | |
| self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
| self.all_head_size = self.num_attention_heads * self.attention_head_size | |
| self.q = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.k = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.v = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.o = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
| def transpose_for_scores(self, x): | |
| new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
| x = x.view(*new_x_shape) | |
| return x.permute(0, 2, 1, 3) | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| head_mask=None, | |
| position_bias=None, | |
| output_attentions=False, | |
| **kwargs, | |
| ): | |
| q = self.q(hidden_states) | |
| k = self.k(hidden_states) | |
| v = self.v(hidden_states) | |
| q = self.transpose_for_scores(q) | |
| k = self.transpose_for_scores(k) | |
| v = self.transpose_for_scores(v) | |
| # Take the dot product between "query" and "key" to get the raw attention scores. | |
| attention_scores = torch.matmul(q, k.transpose(-1, -2)) | |
| attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
| # Apply relative position embedding (precomputed in MPNetEncoder) if provided. | |
| if position_bias is not None: | |
| attention_scores += position_bias | |
| if attention_mask is not None: | |
| attention_scores = attention_scores + attention_mask | |
| # Normalize the attention scores to probabilities. | |
| attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
| attention_probs = self.dropout(attention_probs) | |
| if head_mask is not None: | |
| attention_probs = attention_probs * head_mask | |
| c = torch.matmul(attention_probs, v) | |
| c = c.permute(0, 2, 1, 3).contiguous() | |
| new_c_shape = c.size()[:-2] + (self.all_head_size,) | |
| c = c.view(*new_c_shape) | |
| o = self.o(c) | |
| outputs = (o, attention_probs) if output_attentions else (o,) | |
| return outputs | |
| class MPNetAttention(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.attn = MPNetSelfAttention(config) | |
| self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.pruned_heads = set() | |
| def prune_heads(self, heads): | |
| if len(heads) == 0: | |
| return | |
| heads, index = find_pruneable_heads_and_indices( | |
| heads, self.attn.num_attention_heads, self.attn.attention_head_size, self.pruned_heads | |
| ) | |
| self.attn.q = prune_linear_layer(self.attn.q, index) | |
| self.attn.k = prune_linear_layer(self.attn.k, index) | |
| self.attn.v = prune_linear_layer(self.attn.v, index) | |
| self.attn.o = prune_linear_layer(self.attn.o, index, dim=1) | |
| self.attn.num_attention_heads = self.attn.num_attention_heads - len(heads) | |
| self.attn.all_head_size = self.attn.attention_head_size * self.attn.num_attention_heads | |
| self.pruned_heads = self.pruned_heads.union(heads) | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| head_mask=None, | |
| position_bias=None, | |
| output_attentions=False, | |
| **kwargs, | |
| ): | |
| self_outputs = self.attn( | |
| hidden_states, | |
| attention_mask, | |
| head_mask, | |
| position_bias, | |
| output_attentions=output_attentions, | |
| ) | |
| attention_output = self.LayerNorm(self.dropout(self_outputs[0]) + hidden_states) | |
| outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
| return outputs | |
| # Copied from transformers.models.bert.modeling_bert.BertIntermediate | |
| class MPNetIntermediate(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
| if isinstance(config.hidden_act, str): | |
| self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
| else: | |
| self.intermediate_act_fn = config.hidden_act | |
| def forward(self, hidden_states): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.intermediate_act_fn(hidden_states) | |
| return hidden_states | |
| # Copied from transformers.models.bert.modeling_bert.BertOutput | |
| class MPNetOutput(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
| self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| def forward(self, hidden_states, input_tensor): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
| return hidden_states | |
| class MPNetLayer(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.attention = MPNetAttention(config) | |
| self.intermediate = MPNetIntermediate(config) | |
| self.output = MPNetOutput(config) | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| head_mask=None, | |
| position_bias=None, | |
| output_attentions=False, | |
| **kwargs, | |
| ): | |
| self_attention_outputs = self.attention( | |
| hidden_states, | |
| attention_mask, | |
| head_mask, | |
| position_bias=position_bias, | |
| output_attentions=output_attentions, | |
| ) | |
| attention_output = self_attention_outputs[0] | |
| outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
| intermediate_output = self.intermediate(attention_output) | |
| layer_output = self.output(intermediate_output, attention_output) | |
| outputs = (layer_output,) + outputs | |
| return outputs | |
| class MPNetEncoder(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.n_heads = config.num_attention_heads | |
| self.layer = nn.ModuleList([MPNetLayer(config) for _ in range(config.num_hidden_layers)]) | |
| self.relative_attention_bias = nn.Embedding(config.relative_attention_num_buckets, self.n_heads) | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| head_mask=None, | |
| output_attentions=False, | |
| output_hidden_states=False, | |
| return_dict=False, | |
| **kwargs, | |
| ): | |
| position_bias = self.compute_position_bias(hidden_states) | |
| all_hidden_states = () if output_hidden_states else None | |
| all_attentions = () if output_attentions else None | |
| for i, layer_module in enumerate(self.layer): | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| layer_outputs = layer_module( | |
| hidden_states, | |
| attention_mask, | |
| head_mask[i], | |
| position_bias, | |
| output_attentions=output_attentions, | |
| **kwargs, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if output_attentions: | |
| all_attentions = all_attentions + (layer_outputs[1],) | |
| # Add last layer | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, | |
| hidden_states=all_hidden_states, | |
| attentions=all_attentions, | |
| ) | |
| def compute_position_bias(self, x, position_ids=None, num_buckets=32): | |
| bsz, qlen, klen = x.size(0), x.size(1), x.size(1) | |
| if position_ids is not None: | |
| context_position = position_ids[:, :, None] | |
| memory_position = position_ids[:, None, :] | |
| else: | |
| context_position = torch.arange(qlen, dtype=torch.long)[:, None] | |
| memory_position = torch.arange(klen, dtype=torch.long)[None, :] | |
| relative_position = memory_position - context_position | |
| rp_bucket = self.relative_position_bucket(relative_position, num_buckets=num_buckets) | |
| rp_bucket = rp_bucket.to(x.device) | |
| values = self.relative_attention_bias(rp_bucket) | |
| values = values.permute([2, 0, 1]).unsqueeze(0) | |
| values = values.expand((bsz, -1, qlen, klen)).contiguous() | |
| return values | |
| def relative_position_bucket(relative_position, num_buckets=32, max_distance=128): | |
| ret = 0 | |
| n = -relative_position | |
| num_buckets //= 2 | |
| ret += (n < 0).to(torch.long) * num_buckets | |
| n = torch.abs(n) | |
| max_exact = num_buckets // 2 | |
| is_small = n < max_exact | |
| val_if_large = max_exact + ( | |
| torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) | |
| ).to(torch.long) | |
| val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) | |
| ret += torch.where(is_small, n, val_if_large) | |
| return ret | |
| # Copied from transformers.models.bert.modeling_bert.BertPooler | |
| class MPNetPooler(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.activation = nn.Tanh() | |
| def forward(self, hidden_states): | |
| # We "pool" the model by simply taking the hidden state corresponding | |
| # to the first token. | |
| first_token_tensor = hidden_states[:, 0] | |
| pooled_output = self.dense(first_token_tensor) | |
| pooled_output = self.activation(pooled_output) | |
| return pooled_output | |
| MPNET_START_DOCSTRING = r""" | |
| This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic | |
| methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, | |
| pruning heads etc.) | |
| This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ | |
| subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to | |
| general usage and behavior. | |
| Parameters: | |
| config (:class:`~transformers.MPNetConfig`): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model | |
| weights. | |
| """ | |
| MPNET_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): | |
| Indices of input sequence tokens in the vocabulary. | |
| Indices can be obtained using :class:`transformers.MPNetTokenizer`. See | |
| :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
| details. | |
| `What are input IDs? <../glossary.html#input-ids>`__ | |
| attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| `What are attention masks? <../glossary.html#attention-mask>`__ | |
| position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, | |
| config.max_position_embeddings - 1]``. | |
| `What are position IDs? <../glossary.html#position-ids>`_ | |
| head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): | |
| Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): | |
| Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
| This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
| than the model's internal embedding lookup matrix. | |
| output_attentions (:obj:`bool`, `optional`): | |
| Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
| tensors for more detail. | |
| output_hidden_states (:obj:`bool`, `optional`): | |
| Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
| more detail. | |
| return_dict (:obj:`bool`, `optional`): | |
| Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
| """ | |
| class MPNetModel(MPNetPreTrainedModel): | |
| _keys_to_ignore_on_load_missing = [r"position_ids"] | |
| def __init__(self, config, add_pooling_layer=True): | |
| super().__init__(config) | |
| self.config = config | |
| self.embeddings = MPNetEmbeddings(config) | |
| self.encoder = MPNetEncoder(config) | |
| self.pooler = MPNetPooler(config) if add_pooling_layer else None | |
| self.init_weights() | |
| def get_input_embeddings(self): | |
| return self.embeddings.word_embeddings | |
| def set_input_embeddings(self, value): | |
| self.embeddings.word_embeddings = value | |
| def _prune_heads(self, heads_to_prune): | |
| """ | |
| Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
| class PreTrainedModel | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.encoder.layer[layer].attention.prune_heads(heads) | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| **kwargs, | |
| ): | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| input_shape = input_ids.size() | |
| elif inputs_embeds is not None: | |
| input_shape = inputs_embeds.size()[:-1] | |
| else: | |
| raise ValueError("You have to specify either input_ids or inputs_embeds") | |
| device = input_ids.device if input_ids is not None else inputs_embeds.device | |
| if attention_mask is None: | |
| attention_mask = torch.ones(input_shape, device=device) | |
| extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) | |
| head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
| embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds) | |
| encoder_outputs = self.encoder( | |
| embedding_output, | |
| attention_mask=extended_attention_mask, | |
| head_mask=head_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = encoder_outputs[0] | |
| pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
| if not return_dict: | |
| return (sequence_output, pooled_output) + encoder_outputs[1:] | |
| return BaseModelOutputWithPooling( | |
| last_hidden_state=sequence_output, | |
| pooler_output=pooled_output, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| ) | |
| class MPNetForMaskedLM(MPNetPreTrainedModel): | |
| _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] | |
| _keys_to_ignore_on_load_unexpected = [r"pooler"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.mpnet = MPNetModel(config, add_pooling_layer=False) | |
| self.lm_head = MPNetLMHead(config) | |
| self.init_weights() | |
| def get_output_embeddings(self): | |
| return self.lm_head.decoder | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head.decoder = new_embeddings | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| labels=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., | |
| config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored | |
| (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.mpnet( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| prediction_scores = self.lm_head(sequence_output) | |
| masked_lm_loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
| if not return_dict: | |
| output = (prediction_scores,) + outputs[2:] | |
| return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
| return MaskedLMOutput( | |
| loss=masked_lm_loss, | |
| logits=prediction_scores, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| class MPNetLMHead(nn.Module): | |
| """MPNet Head for masked and permuted language modeling.""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
| # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` | |
| self.decoder.bias = self.bias | |
| def forward(self, features, **kwargs): | |
| x = self.dense(features) | |
| x = gelu(x) | |
| x = self.layer_norm(x) | |
| # project back to size of vocabulary with bias | |
| x = self.decoder(x) | |
| return x | |
| class MPNetForSequenceClassification(MPNetPreTrainedModel): | |
| _keys_to_ignore_on_load_missing = [r"position_ids"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.mpnet = MPNetModel(config, add_pooling_layer=False) | |
| self.classifier = MPNetClassificationHead(config) | |
| self.init_weights() | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| labels=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
| Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., | |
| config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), | |
| If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.mpnet( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| logits = self.classifier(sequence_output) | |
| loss = None | |
| if labels is not None: | |
| if self.num_labels == 1: | |
| # We are doing regression | |
| loss_fct = MSELoss() | |
| loss = loss_fct(logits.view(-1), labels.view(-1)) | |
| else: | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
| if not return_dict: | |
| output = (logits,) + outputs[2:] | |
| return ((loss,) + output) if loss is not None else output | |
| return SequenceClassifierOutput( | |
| loss=loss, | |
| logits=logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| class MPNetForMultipleChoice(MPNetPreTrainedModel): | |
| _keys_to_ignore_on_load_missing = [r"position_ids"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.mpnet = MPNetModel(config) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.classifier = nn.Linear(config.hidden_size, 1) | |
| self.init_weights() | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| labels=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
| Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., | |
| num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See | |
| :obj:`input_ids` above) | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | |
| flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None | |
| flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
| flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
| flat_inputs_embeds = ( | |
| inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) | |
| if inputs_embeds is not None | |
| else None | |
| ) | |
| outputs = self.mpnet( | |
| flat_input_ids, | |
| position_ids=flat_position_ids, | |
| attention_mask=flat_attention_mask, | |
| head_mask=head_mask, | |
| inputs_embeds=flat_inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| pooled_output = outputs[1] | |
| pooled_output = self.dropout(pooled_output) | |
| logits = self.classifier(pooled_output) | |
| reshaped_logits = logits.view(-1, num_choices) | |
| loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(reshaped_logits, labels) | |
| if not return_dict: | |
| output = (reshaped_logits,) + outputs[2:] | |
| return ((loss,) + output) if loss is not None else output | |
| return MultipleChoiceModelOutput( | |
| loss=loss, | |
| logits=reshaped_logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| class MPNetForTokenClassification(MPNetPreTrainedModel): | |
| _keys_to_ignore_on_load_unexpected = [r"pooler"] | |
| _keys_to_ignore_on_load_missing = [r"position_ids"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.mpnet = MPNetModel(config, add_pooling_layer=False) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
| self.init_weights() | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| labels=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - | |
| 1]``. | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.mpnet( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| sequence_output = self.dropout(sequence_output) | |
| logits = self.classifier(sequence_output) | |
| loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| # Only keep active parts of the loss | |
| if attention_mask is not None: | |
| active_loss = attention_mask.view(-1) == 1 | |
| active_logits = logits.view(-1, self.num_labels) | |
| active_labels = torch.where( | |
| active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) | |
| ) | |
| loss = loss_fct(active_logits, active_labels) | |
| else: | |
| loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
| if not return_dict: | |
| output = (logits,) + outputs[2:] | |
| return ((loss,) + output) if loss is not None else output | |
| return TokenClassifierOutput( | |
| loss=loss, | |
| logits=logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| class MPNetClassificationHead(nn.Module): | |
| """Head for sentence-level classification tasks.""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
| def forward(self, features, **kwargs): | |
| x = features[:, 0, :] # take <s> token (equiv. to BERT's [CLS] token) | |
| x = self.dropout(x) | |
| x = self.dense(x) | |
| x = torch.tanh(x) | |
| x = self.dropout(x) | |
| x = self.out_proj(x) | |
| return x | |
| class MPNetForQuestionAnswering(MPNetPreTrainedModel): | |
| _keys_to_ignore_on_load_unexpected = [r"pooler"] | |
| _keys_to_ignore_on_load_missing = [r"position_ids"] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.mpnet = MPNetModel(config, add_pooling_layer=False) | |
| self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
| self.init_weights() | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| start_positions=None, | |
| end_positions=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
| Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the | |
| sequence are not taken into account for computing the loss. | |
| end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
| Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the | |
| sequence are not taken into account for computing the loss. | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.mpnet( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| logits = self.qa_outputs(sequence_output) | |
| start_logits, end_logits = logits.split(1, dim=-1) | |
| start_logits = start_logits.squeeze(-1).contiguous() | |
| end_logits = end_logits.squeeze(-1).contiguous() | |
| total_loss = None | |
| if start_positions is not None and end_positions is not None: | |
| # If we are on multi-GPU, split add a dimension | |
| if len(start_positions.size()) > 1: | |
| start_positions = start_positions.squeeze(-1) | |
| if len(end_positions.size()) > 1: | |
| end_positions = end_positions.squeeze(-1) | |
| # sometimes the start/end positions are outside our model inputs, we ignore these terms | |
| ignored_index = start_logits.size(1) | |
| start_positions = start_positions.clamp(0, ignored_index) | |
| end_positions = end_positions.clamp(0, ignored_index) | |
| loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
| start_loss = loss_fct(start_logits, start_positions) | |
| end_loss = loss_fct(end_logits, end_positions) | |
| total_loss = (start_loss + end_loss) / 2 | |
| if not return_dict: | |
| output = (start_logits, end_logits) + outputs[2:] | |
| return ((total_loss,) + output) if total_loss is not None else output | |
| return QuestionAnsweringModelOutput( | |
| loss=total_loss, | |
| start_logits=start_logits, | |
| end_logits=end_logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| def create_position_ids_from_input_ids(input_ids, padding_idx): | |
| """ | |
| Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols | |
| are ignored. This is modified from fairseq's `utils.make_positions`. :param torch.Tensor x: :return torch.Tensor: | |
| """ | |
| # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. | |
| mask = input_ids.ne(padding_idx).int() | |
| incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask | |
| return incremental_indices.long() + padding_idx | |