Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" MPNet model configuration """ | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"microsoft/mpnet-base": "https://huggingface.co/microsoft/mpnet-base/resolve/main/config.json", | |
} | |
class MPNetConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a :class:`~transformers.MPNetModel` or a | |
:class:`~transformers.TFMPNetModel`. It is used to instantiate a MPNet model according to the specified arguments, | |
defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration | |
to that of the MPNet `mpnet-base <https://huggingface.co/mpnet-base>`__ architecture. | |
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model | |
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. | |
Args: | |
vocab_size (:obj:`int`, `optional`, defaults to 30527): | |
Vocabulary size of the MPNet model. Defines the number of different tokens that can be represented by the | |
:obj:`inputs_ids` passed when calling :class:`~transformers.MPNetModel` or | |
:class:`~transformers.TFMPNetModel`. | |
hidden_size (:obj:`int`, `optional`, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
num_hidden_layers (:obj:`int`, `optional`, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (:obj:`int`, `optional`, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
intermediate_size (:obj:`int`, `optional`, defaults to 3072): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, | |
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. | |
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1): | |
The dropout ratio for the attention probabilities. | |
max_position_embeddings (:obj:`int`, `optional`, defaults to 512): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
initializer_range (:obj:`float`, `optional`, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): | |
The epsilon used by the layer normalization layers. | |
relative_attention_num_buckets (:obj:`int`, `optional`, defaults to 32): | |
The number of buckets to use for each attention layer. | |
Examples:: | |
>>> from transformers import MPNetModel, MPNetConfig | |
>>> # Initializing a MPNet mpnet-base style configuration | |
>>> configuration = MPNetConfig() | |
>>> # Initializing a model from the mpnet-base style configuration | |
>>> model = MPNetModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
""" | |
model_type = "mpnet" | |
def __init__( | |
self, | |
vocab_size=30527, | |
hidden_size=768, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
intermediate_size=3072, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
relative_attention_num_buckets=32, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
**kwargs, | |
): | |
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_act = hidden_act | |
self.intermediate_size = intermediate_size | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.relative_attention_num_buckets = relative_attention_num_buckets | |