Spaces:
Sleeping
Sleeping
# MIT License | |
# | |
# Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
import math | |
import os | |
import warnings | |
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
import torch | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...file_utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
replace_return_docstrings, | |
) | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPooling, | |
MaskedLMOutput, | |
MultipleChoiceModelOutput, | |
NextSentencePredictorOutput, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import logging | |
from .configuration_mobilebert import MobileBertConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "google/mobilebert-uncased" | |
_CONFIG_FOR_DOC = "MobileBertConfig" | |
_TOKENIZER_FOR_DOC = "MobileBertTokenizer" | |
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = ["google/mobilebert-uncased"] | |
def load_tf_weights_in_mobilebert(model, config, tf_checkpoint_path): | |
"""Load tf checkpoints in a pytorch model.""" | |
try: | |
import re | |
import numpy as np | |
import tensorflow as tf | |
except ImportError: | |
logger.error( | |
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
"https://www.tensorflow.org/install/ for installation instructions." | |
) | |
raise | |
tf_path = os.path.abspath(tf_checkpoint_path) | |
logger.info(f"Converting TensorFlow checkpoint from {tf_path}") | |
# Load weights from TF model | |
init_vars = tf.train.list_variables(tf_path) | |
names = [] | |
arrays = [] | |
for name, shape in init_vars: | |
logger.info(f"Loading TF weight {name} with shape {shape}") | |
array = tf.train.load_variable(tf_path, name) | |
names.append(name) | |
arrays.append(array) | |
for name, array in zip(names, arrays): | |
name = name.replace("ffn_layer", "ffn") | |
name = name.replace("FakeLayerNorm", "LayerNorm") | |
name = name.replace("extra_output_weights", "dense/kernel") | |
name = name.replace("bert", "mobilebert") | |
name = name.split("/") | |
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
# which are not required for using pretrained model | |
if any( | |
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] | |
for n in name | |
): | |
logger.info(f"Skipping {'/'.join(name)}") | |
continue | |
pointer = model | |
for m_name in name: | |
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): | |
scope_names = re.split(r"_(\d+)", m_name) | |
else: | |
scope_names = [m_name] | |
if scope_names[0] == "kernel" or scope_names[0] == "gamma": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "output_bias" or scope_names[0] == "beta": | |
pointer = getattr(pointer, "bias") | |
elif scope_names[0] == "output_weights": | |
pointer = getattr(pointer, "weight") | |
elif scope_names[0] == "squad": | |
pointer = getattr(pointer, "classifier") | |
else: | |
try: | |
pointer = getattr(pointer, scope_names[0]) | |
except AttributeError: | |
logger.info(f"Skipping {'/'.join(name)}") | |
continue | |
if len(scope_names) >= 2: | |
num = int(scope_names[1]) | |
pointer = pointer[num] | |
if m_name[-11:] == "_embeddings": | |
pointer = getattr(pointer, "weight") | |
elif m_name == "kernel": | |
array = np.transpose(array) | |
try: | |
assert ( | |
pointer.shape == array.shape | |
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
logger.info(f"Initialize PyTorch weight {name}") | |
pointer.data = torch.from_numpy(array) | |
return model | |
class NoNorm(nn.Module): | |
def __init__(self, feat_size, eps=None): | |
super().__init__() | |
self.bias = nn.Parameter(torch.zeros(feat_size)) | |
self.weight = nn.Parameter(torch.ones(feat_size)) | |
def forward(self, input_tensor): | |
return input_tensor * self.weight + self.bias | |
NORM2FN = {"layer_norm": nn.LayerNorm, "no_norm": NoNorm} | |
class MobileBertEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings.""" | |
def __init__(self, config): | |
super().__init__() | |
self.trigram_input = config.trigram_input | |
self.embedding_size = config.embedding_size | |
self.hidden_size = config.hidden_size | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
embed_dim_multiplier = 3 if self.trigram_input else 1 | |
embedded_input_size = self.embedding_size * embed_dim_multiplier | |
self.embedding_transformation = nn.Linear(embedded_input_size, config.hidden_size) | |
self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) | |
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
if position_ids is None: | |
position_ids = self.position_ids[:, :seq_length] | |
if token_type_ids is None: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
if self.trigram_input: | |
# From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited | |
# Devices (https://arxiv.org/abs/2004.02984) | |
# | |
# The embedding table in BERT models accounts for a substantial proportion of model size. To compress | |
# the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. | |
# Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 | |
# dimensional output. | |
inputs_embeds = torch.cat( | |
[ | |
nn.functional.pad(inputs_embeds[:, 1:], [0, 0, 0, 1, 0, 0], value=0), | |
inputs_embeds, | |
nn.functional.pad(inputs_embeds[:, :-1], [0, 0, 1, 0, 0, 0], value=0), | |
], | |
dim=2, | |
) | |
if self.trigram_input or self.embedding_size != self.hidden_size: | |
inputs_embeds = self.embedding_transformation(inputs_embeds) | |
# Add positional embeddings and token type embeddings, then layer | |
# normalize and perform dropout. | |
position_embeddings = self.position_embeddings(position_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + position_embeddings + token_type_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class MobileBertSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.true_hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.true_hidden_size, self.all_head_size) | |
self.value = nn.Linear( | |
config.true_hidden_size if config.use_bottleneck_attention else config.hidden_size, self.all_head_size | |
) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
query_tensor, | |
key_tensor, | |
value_tensor, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=None, | |
): | |
mixed_query_layer = self.query(query_tensor) | |
mixed_key_layer = self.key(key_tensor) | |
mixed_value_layer = self.value(value_tensor) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
key_layer = self.transpose_for_scores(mixed_key_layer) | |
value_layer = self.transpose_for_scores(mixed_value_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
class MobileBertSelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.use_bottleneck = config.use_bottleneck | |
self.dense = nn.Linear(config.true_hidden_size, config.true_hidden_size) | |
self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) | |
if not self.use_bottleneck: | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, residual_tensor): | |
layer_outputs = self.dense(hidden_states) | |
if not self.use_bottleneck: | |
layer_outputs = self.dropout(layer_outputs) | |
layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) | |
return layer_outputs | |
class MobileBertAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.self = MobileBertSelfAttention(config) | |
self.output = MobileBertSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
query_tensor, | |
key_tensor, | |
value_tensor, | |
layer_input, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=None, | |
): | |
self_outputs = self.self( | |
query_tensor, | |
key_tensor, | |
value_tensor, | |
attention_mask, | |
head_mask, | |
output_attentions, | |
) | |
# Run a linear projection of `hidden_size` then add a residual | |
# with `layer_input`. | |
attention_output = self.output(self_outputs[0], layer_input) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
class MobileBertIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.true_hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class OutputBottleneck(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.true_hidden_size, config.hidden_size) | |
self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, residual_tensor): | |
layer_outputs = self.dense(hidden_states) | |
layer_outputs = self.dropout(layer_outputs) | |
layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) | |
return layer_outputs | |
class MobileBertOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.use_bottleneck = config.use_bottleneck | |
self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) | |
self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size) | |
if not self.use_bottleneck: | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
else: | |
self.bottleneck = OutputBottleneck(config) | |
def forward(self, intermediate_states, residual_tensor_1, residual_tensor_2): | |
layer_output = self.dense(intermediate_states) | |
if not self.use_bottleneck: | |
layer_output = self.dropout(layer_output) | |
layer_output = self.LayerNorm(layer_output + residual_tensor_1) | |
else: | |
layer_output = self.LayerNorm(layer_output + residual_tensor_1) | |
layer_output = self.bottleneck(layer_output, residual_tensor_2) | |
return layer_output | |
class BottleneckLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intra_bottleneck_size) | |
self.LayerNorm = NORM2FN[config.normalization_type](config.intra_bottleneck_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states): | |
layer_input = self.dense(hidden_states) | |
layer_input = self.LayerNorm(layer_input) | |
return layer_input | |
class Bottleneck(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.key_query_shared_bottleneck = config.key_query_shared_bottleneck | |
self.use_bottleneck_attention = config.use_bottleneck_attention | |
self.input = BottleneckLayer(config) | |
if self.key_query_shared_bottleneck: | |
self.attention = BottleneckLayer(config) | |
def forward(self, hidden_states): | |
# This method can return three different tuples of values. These different values make use of bottlenecks, | |
# which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory | |
# usage. These linear layer have weights that are learned during training. | |
# | |
# If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the | |
# key, query, value, and "layer input" to be used by the attention layer. | |
# This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor | |
# in the attention self output, after the attention scores have been computed. | |
# | |
# If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return | |
# four values, three of which have been passed through a bottleneck: the query and key, passed through the same | |
# bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. | |
# | |
# Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, | |
# and the residual layer will be this value passed through a bottleneck. | |
bottlenecked_hidden_states = self.input(hidden_states) | |
if self.use_bottleneck_attention: | |
return (bottlenecked_hidden_states,) * 4 | |
elif self.key_query_shared_bottleneck: | |
shared_attention_input = self.attention(hidden_states) | |
return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) | |
else: | |
return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states) | |
class FFNOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) | |
self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states, residual_tensor): | |
layer_outputs = self.dense(hidden_states) | |
layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) | |
return layer_outputs | |
class FFNLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.intermediate = MobileBertIntermediate(config) | |
self.output = FFNOutput(config) | |
def forward(self, hidden_states): | |
intermediate_output = self.intermediate(hidden_states) | |
layer_outputs = self.output(intermediate_output, hidden_states) | |
return layer_outputs | |
class MobileBertLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.use_bottleneck = config.use_bottleneck | |
self.num_feedforward_networks = config.num_feedforward_networks | |
self.attention = MobileBertAttention(config) | |
self.intermediate = MobileBertIntermediate(config) | |
self.output = MobileBertOutput(config) | |
if self.use_bottleneck: | |
self.bottleneck = Bottleneck(config) | |
if config.num_feedforward_networks > 1: | |
self.ffn = nn.ModuleList([FFNLayer(config) for _ in range(config.num_feedforward_networks - 1)]) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=None, | |
): | |
if self.use_bottleneck: | |
query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) | |
else: | |
query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 | |
self_attention_outputs = self.attention( | |
query_tensor, | |
key_tensor, | |
value_tensor, | |
layer_input, | |
attention_mask, | |
head_mask, | |
output_attentions=output_attentions, | |
) | |
attention_output = self_attention_outputs[0] | |
s = (attention_output,) | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
if self.num_feedforward_networks != 1: | |
for i, ffn_module in enumerate(self.ffn): | |
attention_output = ffn_module(attention_output) | |
s += (attention_output,) | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output, hidden_states) | |
outputs = ( | |
(layer_output,) | |
+ outputs | |
+ ( | |
torch.tensor(1000), | |
query_tensor, | |
key_tensor, | |
value_tensor, | |
layer_input, | |
attention_output, | |
intermediate_output, | |
) | |
+ s | |
) | |
return outputs | |
class MobileBertEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.layer = nn.ModuleList([MobileBertLayer(config) for _ in range(config.num_hidden_layers)]) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_outputs = layer_module( | |
hidden_states, | |
attention_mask, | |
head_mask[i], | |
output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
# Add last layer | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions | |
) | |
class MobileBertPooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.do_activate = config.classifier_activation | |
if self.do_activate: | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
def forward(self, hidden_states): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
if not self.do_activate: | |
return first_token_tensor | |
else: | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = torch.tanh(pooled_output) | |
return pooled_output | |
class MobileBertPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
if isinstance(config.hidden_act, str): | |
self.transform_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.transform_act_fn = config.hidden_act | |
self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class MobileBertLMPredictionHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.transform = MobileBertPredictionHeadTransform(config) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.dense = nn.Linear(config.vocab_size, config.hidden_size - config.embedding_size, bias=False) | |
self.decoder = nn.Linear(config.embedding_size, config.vocab_size, bias=False) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` | |
self.decoder.bias = self.bias | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
hidden_states = hidden_states.matmul(torch.cat([self.decoder.weight.t(), self.dense.weight], dim=0)) | |
hidden_states += self.decoder.bias | |
return hidden_states | |
class MobileBertOnlyMLMHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.predictions = MobileBertLMPredictionHead(config) | |
def forward(self, sequence_output): | |
prediction_scores = self.predictions(sequence_output) | |
return prediction_scores | |
class MobileBertPreTrainingHeads(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.predictions = MobileBertLMPredictionHead(config) | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, sequence_output, pooled_output): | |
prediction_scores = self.predictions(sequence_output) | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return prediction_scores, seq_relationship_score | |
class MobileBertPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = MobileBertConfig | |
pretrained_model_archive_map = MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST | |
load_tf_weights = load_tf_weights_in_mobilebert | |
base_model_prefix = "mobilebert" | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Linear): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, (nn.LayerNorm, NoNorm)): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
class MobileBertForPreTrainingOutput(ModelOutput): | |
""" | |
Output type of :class:`~transformers.MobileBertForPreTraining`. | |
Args: | |
loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`): | |
Total loss as the sum of the masked language modeling loss and the next sequence prediction | |
(classification) loss. | |
prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
seq_relationship_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`): | |
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation | |
before SoftMax). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
prediction_logits: torch.FloatTensor = None | |
seq_relationship_logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
MOBILEBERT_START_DOCSTRING = r""" | |
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic | |
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, | |
pruning heads etc.) | |
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ | |
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to | |
general usage and behavior. | |
Parameters: | |
config (:class:`~transformers.MobileBertConfig`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model | |
weights. | |
""" | |
MOBILEBERT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using :class:`~transformers.BertTokenizer`. See | |
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): | |
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, | |
1]``: | |
- 0 corresponds to a `sentence A` token, | |
- 1 corresponds to a `sentence B` token. | |
`What are token type IDs? <../glossary.html#token-type-ids>`_ | |
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, | |
config.max_position_embeddings - 1]``. | |
`What are position IDs? <../glossary.html#position-ids>`_ | |
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
vectors than the model's internal embedding lookup matrix. | |
output_attentions (:obj:`bool`, `optional`): | |
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
tensors for more detail. | |
output_hidden_states (:obj:`bool`, `optional`): | |
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
more detail. | |
return_dict (:obj:`bool`, `optional`): | |
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
""" | |
class MobileBertModel(MobileBertPreTrainedModel): | |
""" | |
https://arxiv.org/pdf/2004.02984.pdf | |
""" | |
def __init__(self, config, add_pooling_layer=True): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = MobileBertEmbeddings(config) | |
self.encoder = MobileBertEncoder(config) | |
self.pooler = MobileBertPooler(config) if add_pooling_layer else None | |
self.init_weights() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
output_hidden_states=None, | |
output_attentions=None, | |
return_dict=None, | |
): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if attention_mask is None: | |
attention_mask = torch.ones(input_shape, device=device) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( | |
attention_mask, input_shape, self.device | |
) | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
embedding_output = self.embeddings( | |
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds | |
) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
class MobileBertForPreTraining(MobileBertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.mobilebert = MobileBertModel(config) | |
self.cls = MobileBertPreTrainingHeads(config) | |
self.init_weights() | |
def get_output_embeddings(self): | |
return self.cls.predictions.decoder | |
def set_output_embeddings(self, new_embeddigs): | |
self.cls.predictions.decoder = new_embeddigs | |
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: | |
# resize dense output embedings at first | |
self.cls.predictions.dense = self._get_resized_lm_head( | |
self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True | |
) | |
return super().resize_token_embeddings(new_num_tokens=new_num_tokens) | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
next_sentence_label=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`): | |
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., | |
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored | |
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` | |
next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`): | |
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair | |
(see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``: | |
- 0 indicates sequence B is a continuation of sequence A, | |
- 1 indicates sequence B is a random sequence. | |
Returns: | |
Examples:: | |
>>> from transformers import MobileBertTokenizer, MobileBertForPreTraining | |
>>> import torch | |
>>> tokenizer = MobileBertTokenizer.from_pretrained("google/mobilebert-uncased") | |
>>> model = MobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") | |
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 | |
>>> outputs = model(input_ids) | |
>>> prediction_logits = outptus.prediction_logits | |
>>> seq_relationship_logits = outputs.seq_relationship_logits | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.mobilebert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output, pooled_output = outputs[:2] | |
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) | |
total_loss = None | |
if labels is not None and next_sentence_label is not None: | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) | |
total_loss = masked_lm_loss + next_sentence_loss | |
if not return_dict: | |
output = (prediction_scores, seq_relationship_score) + outputs[2:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return MobileBertForPreTrainingOutput( | |
loss=total_loss, | |
prediction_logits=prediction_scores, | |
seq_relationship_logits=seq_relationship_score, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class MobileBertForMaskedLM(MobileBertPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.mobilebert = MobileBertModel(config, add_pooling_layer=False) | |
self.cls = MobileBertOnlyMLMHead(config) | |
self.config = config | |
self.init_weights() | |
def get_output_embeddings(self): | |
return self.cls.predictions.decoder | |
def set_output_embeddings(self, new_embeddigs): | |
self.cls.predictions.decoder = new_embeddigs | |
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: | |
# resize dense output embedings at first | |
self.cls.predictions.dense = self._get_resized_lm_head( | |
self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True | |
) | |
return super().resize_token_embeddings(new_num_tokens=new_num_tokens) | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., | |
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored | |
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.mobilebert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
prediction_scores = self.cls(sequence_output) | |
masked_lm_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() # -100 index = padding token | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
if not return_dict: | |
output = (prediction_scores,) + outputs[2:] | |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
return MaskedLMOutput( | |
loss=masked_lm_loss, | |
logits=prediction_scores, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class MobileBertOnlyNSPHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, pooled_output): | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return seq_relationship_score | |
class MobileBertForNextSentencePrediction(MobileBertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.mobilebert = MobileBertModel(config) | |
self.cls = MobileBertOnlyNSPHead(config) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
**kwargs, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair | |
(see ``input_ids`` docstring) Indices should be in ``[0, 1]``. | |
- 0 indicates sequence B is a continuation of sequence A, | |
- 1 indicates sequence B is a random sequence. | |
Returns: | |
Examples:: | |
>>> from transformers import MobileBertTokenizer, MobileBertForNextSentencePrediction | |
>>> import torch | |
>>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') | |
>>> model = MobileBertForNextSentencePrediction.from_pretrained('google/mobilebert-uncased') | |
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." | |
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." | |
>>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt') | |
>>> outputs = model(**encoding, labels=torch.LongTensor([1])) | |
>>> loss = outputs.loss | |
>>> logits = outputs.logits | |
""" | |
if "next_sentence_label" in kwargs: | |
warnings.warn( | |
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use `labels` instead.", | |
FutureWarning, | |
) | |
labels = kwargs.pop("next_sentence_label") | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.mobilebert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs[1] | |
seq_relationship_score = self.cls(pooled_output) | |
next_sentence_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), labels.view(-1)) | |
if not return_dict: | |
output = (seq_relationship_score,) + outputs[2:] | |
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output | |
return NextSentencePredictorOutput( | |
loss=next_sentence_loss, | |
logits=seq_relationship_score, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
# Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification with Bert->MobileBert all-casing | |
class MobileBertForSequenceClassification(MobileBertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.config = config | |
self.mobilebert = MobileBertModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., | |
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), | |
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.mobilebert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs[1] | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
# Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering with Bert->MobileBert all-casing | |
class MobileBertForQuestionAnswering(MobileBertPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.mobilebert = MobileBertModel(config, add_pooling_layer=False) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
start_positions=None, | |
end_positions=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the | |
sequence are not taken into account for computing the loss. | |
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the | |
sequence are not taken into account for computing the loss. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.mobilebert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1).contiguous() | |
end_logits = end_logits.squeeze(-1).contiguous() | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + outputs[2:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return QuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
# Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice with Bert->MobileBert all-casing | |
class MobileBertForMultipleChoice(MobileBertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.mobilebert = MobileBertModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, 1) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., | |
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See | |
:obj:`input_ids` above) | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | |
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None | |
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
inputs_embeds = ( | |
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) | |
if inputs_embeds is not None | |
else None | |
) | |
outputs = self.mobilebert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs[1] | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
reshaped_logits = logits.view(-1, num_choices) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels) | |
if not return_dict: | |
output = (reshaped_logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return MultipleChoiceModelOutput( | |
loss=loss, | |
logits=reshaped_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
# Copied from transformers.models.bert.modeling_bert.BertForTokenClassification with Bert->MobileBert all-casing | |
class MobileBertForTokenClassification(MobileBertPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.mobilebert = MobileBertModel(config, add_pooling_layer=False) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - | |
1]``. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.mobilebert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# Only keep active parts of the loss | |
if attention_mask is not None: | |
active_loss = attention_mask.view(-1) == 1 | |
active_logits = logits.view(-1, self.num_labels) | |
active_labels = torch.where( | |
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) | |
) | |
loss = loss_fct(active_logits, active_labels) | |
else: | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |