Kaizouku's picture
Upload 564 files
2260825 verified
# coding=utf-8
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import contextmanager
from typing import List, Optional
from tokenizers import processors
from ...file_utils import is_sentencepiece_available
from ...tokenization_utils import BatchEncoding
from ...utils import logging
from ..xlm_roberta.tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
MBartTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model",
"facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model",
},
"tokenizer_file": {
"facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json",
"facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"facebook/mbart-large-en-ro": 1024,
"facebook/mbart-large-cc25": 1024,
}
FAIRSEQ_LANGUAGE_CODES = [
"ar_AR",
"cs_CZ",
"de_DE",
"en_XX",
"es_XX",
"et_EE",
"fi_FI",
"fr_XX",
"gu_IN",
"hi_IN",
"it_IT",
"ja_XX",
"kk_KZ",
"ko_KR",
"lt_LT",
"lv_LV",
"my_MM",
"ne_NP",
"nl_XX",
"ro_RO",
"ru_RU",
"si_LK",
"tr_TR",
"vi_VN",
"zh_CN",
]
class MBartTokenizerFast(XLMRobertaTokenizerFast):
"""
Construct a "fast" MBART tokenizer (backed by HuggingFace's `tokenizers` library). Based on `BPE
<https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models>`__.
:class:`~transformers.MBartTokenizerFast` is a subclass of :class:`~transformers.XLMRobertaTokenizerFast`. Refer to
superclass :class:`~transformers.XLMRobertaTokenizerFast` for usage examples and documentation concerning the
initialization parameters and other methods.
The tokenization method is ``<tokens> <eos> <language code>`` for source language documents, and ``<language code>
<tokens> <eos>``` for target language documents.
Examples::
>>> from transformers import MBartTokenizerFast
>>> tokenizer = MBartTokenizerFast.from_pretrained('facebook/mbart-large-en-ro', src_lang="en_XX", tgt_lang="ro_RO")
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> inputs = tokenizer(example_english_phrase, return_tensors="pt)
>>> with tokenizer.as_target_tokenizer():
... labels = tokenizer(expected_translation_romanian, return_tensors="pt")
>>> inputs["labels"] = labels["input_ids"]
"""
vocab_files_names = VOCAB_FILES_NAMES
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
slow_tokenizer_class = MBartTokenizer
prefix_tokens: List[int] = []
suffix_tokens: List[int] = []
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
src_lang=None,
tgt_lang=None,
additional_special_tokens=None,
**kwargs
):
super().__init__(
vocab_file=vocab_file,
tokenizer_file=tokenizer_file,
src_lang=src_lang,
tgt_lang=tgt_lang,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
_additional_special_tokens = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens]
)
self.add_special_tokens({"additional_special_tokens": _additional_special_tokens})
self.lang_code_to_id = {
lang_code: self.convert_tokens_to_ids(lang_code) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
self._src_lang = src_lang if src_lang is not None else "en_XX"
self.cur_lang_code = self.convert_tokens_to_ids(self._src_lang)
self.tgt_lang = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def src_lang(self) -> str:
return self._src_lang
@src_lang.setter
def src_lang(self, new_src_lang: str) -> None:
self._src_lang = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. The special tokens depend on calling set_lang.
An MBART sequence has the following format, where ``X`` represents the sequence:
- ``input_ids`` (for encoder) ``X [eos, src_lang_code]``
- ``decoder_input_ids``: (for decoder) ``X [eos, tgt_lang_code]``
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
separator.
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
Returns:
:obj:`List[int]`: list of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
"""
if token_ids_1 is None:
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
def _build_translation_inputs(self, raw_inputs, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs):
"""Used by translation pipeline, to prepare inputs for the generate function"""
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
self.src_lang = src_lang
inputs = self(raw_inputs, add_special_tokens=True, return_tensors="pt", **extra_kwargs)
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
inputs["forced_bos_token_id"] = tgt_lang_id
return inputs
def prepare_seq2seq_batch(
self,
src_texts: List[str],
src_lang: str = "en_XX",
tgt_texts: Optional[List[str]] = None,
tgt_lang: str = "ro_RO",
**kwargs,
) -> BatchEncoding:
self.src_lang = src_lang
self.tgt_lang = tgt_lang
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
@contextmanager
def as_target_tokenizer(self):
"""
Temporarily sets the tokenizer for encoding the targets. Useful for tokenizer associated to
sequence-to-sequence models that need a slightly different processing for the labels.
"""
self.set_tgt_lang_special_tokens(self.tgt_lang)
yield
self.set_src_lang_special_tokens(self.src_lang)
def set_src_lang_special_tokens(self, src_lang) -> None:
"""Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code]."""
self.cur_lang_code = self.convert_tokens_to_ids(src_lang)
self.prefix_tokens = []
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
self._tokenizer.post_processor = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
)
def set_tgt_lang_special_tokens(self, lang: str) -> None:
"""Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code]."""
self.cur_lang_code = self.convert_tokens_to_ids(lang)
self.prefix_tokens = []
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
self._tokenizer.post_processor = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
)