Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from contextlib import contextmanager | |
from shutil import copyfile | |
from typing import Any, Dict, List, Optional, Tuple | |
import sentencepiece as spm | |
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
SPIECE_UNDERLINE = "▁" | |
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} | |
PRETRAINED_VOCAB_FILES_MAP = { | |
"vocab_file": { | |
"facebook/mbart-large-50-one-to-many-mmt": "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model", | |
} | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
"facebook/mbart-large-50-one-to-many-mmt": 1024, | |
} | |
# fmt: off | |
FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] | |
# fmt: on | |
class MBart50Tokenizer(PreTrainedTokenizer): | |
""" | |
Construct a MBart50 tokenizer. Based on `SentencePiece <https://github.com/google/sentencepiece>`__. | |
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods. | |
Users should refer to this superclass for more information regarding those methods. | |
Args: | |
vocab_file (:obj:`str`): | |
Path to the vocabulary file. | |
src_lang (:obj:`str`, `optional`): | |
A string representing the source language. | |
tgt_lang (:obj:`str`, `optional`): | |
A string representing the target language. | |
eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): | |
The end of sequence token. | |
sep_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): | |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for | |
sequence classification or for a text and a question for question answering. It is also used as the last | |
token of a sequence built with special tokens. | |
cls_token (:obj:`str`, `optional`, defaults to :obj:`"<s>"`): | |
The classifier token which is used when doing sequence classification (classification of the whole sequence | |
instead of per-token classification). It is the first token of the sequence when built with special tokens. | |
unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`): | |
The token used for padding, for example when batching sequences of different lengths. | |
mask_token (:obj:`str`, `optional`, defaults to :obj:`"<mask>"`): | |
The token used for masking values. This is the token used when training this model with masked language | |
modeling. This is the token which the model will try to predict. | |
sp_model_kwargs (:obj:`dict`, `optional`): | |
Will be passed to the ``SentencePieceProcessor.__init__()`` method. The `Python wrapper for SentencePiece | |
<https://github.com/google/sentencepiece/tree/master/python>`__ can be used, among other things, to set: | |
- ``enable_sampling``: Enable subword regularization. | |
- ``nbest_size``: Sampling parameters for unigram. Invalid for BPE-Dropout. | |
- ``nbest_size = {0,1}``: No sampling is performed. | |
- ``nbest_size > 1``: samples from the nbest_size results. | |
- ``nbest_size < 0``: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) | |
using forward-filtering-and-backward-sampling algorithm. | |
- ``alpha``: Smoothing parameter for unigram sampling, and dropout probability of merge operations for | |
BPE-dropout. | |
Examples:: | |
>>> from transformers import MBart50Tokenizer | |
>>> tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO") | |
>>> src_text = " UN Chief Says There Is No Military Solution in Syria" | |
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria" | |
>>> model_inputs = tokenizer(src_text, return_tensors="pt") | |
>>> with tokenizer.as_target_tokenizer(): | |
... labels = tokenizer(tgt_text, return_tensors="pt").input_ids | |
>>> # model(**model_inputs, labels=labels) should work | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
model_input_names = ["input_ids", "attention_mask"] | |
prefix_tokens: List[int] = [] | |
suffix_tokens: List[int] = [] | |
def __init__( | |
self, | |
vocab_file, | |
src_lang=None, | |
tgt_lang=None, | |
eos_token="</s>", | |
sep_token="</s>", | |
cls_token="<s>", | |
unk_token="<unk>", | |
pad_token="<pad>", | |
mask_token="<mask>", | |
sp_model_kwargs: Optional[Dict[str, Any]] = None, | |
**kwargs | |
) -> None: | |
# Mask token behave like a normal word, i.e. include the space before it | |
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token | |
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs | |
super().__init__( | |
src_lang=src_lang, | |
tgt_lang=tgt_lang, | |
eos_token=eos_token, | |
unk_token=unk_token, | |
sep_token=sep_token, | |
cls_token=cls_token, | |
pad_token=pad_token, | |
mask_token=mask_token, | |
sp_model_kwargs=self.sp_model_kwargs, | |
**kwargs, | |
) | |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
self.sp_model.Load(str(vocab_file)) | |
self.vocab_file = vocab_file | |
# Original fairseq vocab and spm vocab must be "aligned": | |
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- | |
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | |
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' | |
# Mimic fairseq token-to-id alignment for the first 4 token | |
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} | |
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab | |
self.fairseq_offset = 1 | |
self.sp_model_size = len(self.sp_model) | |
self.lang_code_to_id = { | |
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(FAIRSEQ_LANGUAGE_CODES) | |
} | |
self.id_to_lang_code = {v: k for k, v in self.lang_code_to_id.items()} | |
self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset | |
self.fairseq_tokens_to_ids.update(self.lang_code_to_id) | |
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} | |
self._additional_special_tokens = list(self.lang_code_to_id.keys()) | |
self._src_lang = src_lang if src_lang is not None else "en_XX" | |
self.cur_lang_code_id = self.lang_code_to_id[self._src_lang] | |
self.tgt_lang = tgt_lang | |
self.set_src_lang_special_tokens(self._src_lang) | |
def vocab_size(self) -> int: | |
return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token | |
def src_lang(self) -> str: | |
return self._src_lang | |
def src_lang(self, new_src_lang: str) -> None: | |
self._src_lang = new_src_lang | |
self.set_src_lang_special_tokens(self._src_lang) | |
def __getstate__(self) -> Dict: | |
state = self.__dict__.copy() | |
state["sp_model"] = None | |
return state | |
def __setstate__(self, d: Dict) -> None: | |
self.__dict__ = d | |
# for backward compatibility | |
if not hasattr(self, "sp_model_kwargs"): | |
self.sp_model_kwargs = {} | |
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | |
self.sp_model.Load(self.vocab_file) | |
def get_vocab(self) -> Dict: | |
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} | |
vocab.update(self.added_tokens_encoder) | |
return vocab | |
def _tokenize(self, text: str) -> List[str]: | |
return self.sp_model.encode(text, out_type=str) | |
def _convert_token_to_id(self, token: str) -> int: | |
"""Converts a token (str) in an id using the vocab.""" | |
if token in self.fairseq_tokens_to_ids: | |
return self.fairseq_tokens_to_ids[token] | |
spm_id = self.sp_model.PieceToId(token) | |
# Need to return unknown token if the SP model returned 0 | |
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id | |
def _convert_id_to_token(self, index: int) -> str: | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
if index in self.fairseq_ids_to_tokens: | |
return self.fairseq_ids_to_tokens[index] | |
return self.sp_model.IdToPiece(index - self.fairseq_offset) | |
def convert_tokens_to_string(self, tokens: List[str]) -> str: | |
"""Converts a sequence of tokens (strings for sub-words) in a single string.""" | |
return self.sp_model.decode(tokens) | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
if not os.path.isdir(save_directory): | |
logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
return | |
out_vocab_file = os.path.join( | |
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
) | |
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): | |
copyfile(self.vocab_file, out_vocab_file) | |
return (out_vocab_file,) | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer ``prepare_for_model`` method. | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of IDs. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
prefix_ones = [1] * len(self.prefix_tokens) | |
suffix_ones = [1] * len(self.suffix_tokens) | |
if token_ids_1 is None: | |
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones | |
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones | |
def build_inputs_with_special_tokens( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
adding special tokens. An MBART-50 sequence has the following format, where ``X`` represents the sequence: | |
- ``input_ids`` (for encoder) ``[src_lang_code] X [eos]`` | |
- ``labels``: (for decoder) ``[tgt_lang_code] X [eos]`` | |
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a | |
separator. | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. | |
""" | |
if token_ids_1 is None: | |
return self.prefix_tokens + token_ids_0 + self.suffix_tokens | |
# We don't expect to process pairs, but leave the pair logic for API consistency | |
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens | |
def _build_translation_inputs(self, raw_inputs, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs): | |
"""Used by translation pipeline, to prepare inputs for the generate function""" | |
if src_lang is None or tgt_lang is None: | |
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") | |
self.src_lang = src_lang | |
inputs = self(raw_inputs, add_special_tokens=True, return_tensors="pt", **extra_kwargs) | |
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) | |
inputs["forced_bos_token_id"] = tgt_lang_id | |
return inputs | |
def prepare_seq2seq_batch( | |
self, | |
src_texts: List[str], | |
src_lang: str = "en_XX", | |
tgt_texts: Optional[List[str]] = None, | |
tgt_lang: str = "ro_RO", | |
**kwargs, | |
) -> BatchEncoding: | |
self.src_lang = src_lang | |
self.tgt_lang = tgt_lang | |
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) | |
def as_target_tokenizer(self): | |
""" | |
Temporarily sets the tokenizer for encoding the targets. Useful for tokenizer associated to | |
sequence-to-sequence models that need a slightly different processing for the labels. | |
""" | |
self.set_tgt_lang_special_tokens(self.tgt_lang) | |
yield | |
self.set_src_lang_special_tokens(self.src_lang) | |
def set_src_lang_special_tokens(self, src_lang: str) -> None: | |
"""Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos].""" | |
self.cur_lang_code_id = self.lang_code_to_id[src_lang] | |
self.prefix_tokens = [self.cur_lang_code_id] | |
self.suffix_tokens = [self.eos_token_id] | |
def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None: | |
"""Reset the special tokens to the target language setting. prefix=[tgt_lang_code] and suffix=[eos].""" | |
self.cur_lang_code_id = self.lang_code_to_id[tgt_lang] | |
self.prefix_tokens = [self.cur_lang_code_id] | |
self.suffix_tokens = [self.eos_token_id] | |