Spaces:
Sleeping
Sleeping
| # coding=utf-8 | |
| # Copyright 2021 The Marian Team Authors and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """PyTorch MarianMTModel model, ported from the Marian C++ repo.""" | |
| import copy | |
| import math | |
| import random | |
| from typing import Optional, Tuple | |
| import numpy as np | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.nn import CrossEntropyLoss | |
| from ...activations import ACT2FN | |
| from ...file_utils import ( | |
| add_end_docstrings, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| replace_return_docstrings, | |
| ) | |
| from ...modeling_outputs import ( | |
| BaseModelOutput, | |
| BaseModelOutputWithPastAndCrossAttentions, | |
| CausalLMOutputWithCrossAttentions, | |
| Seq2SeqLMOutput, | |
| Seq2SeqModelOutput, | |
| ) | |
| from ...modeling_utils import PreTrainedModel | |
| from ...utils import logging | |
| from .configuration_marian import MarianConfig | |
| logger = logging.get_logger(__name__) | |
| _CONFIG_FOR_DOC = "MarianConfig" | |
| _TOKENIZER_FOR_DOC = "MarianTokenizer" | |
| _CHECKPOINT_FOR_DOC = "Helsinki-NLP/opus-mt-en-de" | |
| MARIAN_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "Helsinki-NLP/opus-mt-en-de", | |
| # See all Marian models at https://huggingface.co/models?filter=marian | |
| ] | |
| # Copied from transformers.models.bart.modeling_bart.shift_tokens_right | |
| def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): | |
| """ | |
| Shift input ids one token to the right. | |
| """ | |
| shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
| shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() | |
| shifted_input_ids[:, 0] = decoder_start_token_id | |
| assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." | |
| # replace possible -100 values in labels by `pad_token_id` | |
| shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
| return shifted_input_ids | |
| # Copied from transformers.models.bart.modeling_bart._make_causal_mask | |
| def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0): | |
| """ | |
| Make causal mask used for bi-directional self-attention. | |
| """ | |
| bsz, tgt_len = input_ids_shape | |
| mask = torch.full((tgt_len, tgt_len), float("-inf")) | |
| mask_cond = torch.arange(mask.size(-1)) | |
| mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
| mask = mask.to(dtype) | |
| if past_key_values_length > 0: | |
| mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1) | |
| return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | |
| # Copied from transformers.models.bart.modeling_bart._expand_mask | |
| def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
| """ | |
| Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
| """ | |
| bsz, src_len = mask.size() | |
| tgt_len = tgt_len if tgt_len is not None else src_len | |
| expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
| inverted_mask = 1.0 - expanded_mask | |
| return inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min) | |
| class MarianSinusoidalPositionalEmbedding(nn.Embedding): | |
| """This module produces sinusoidal positional embeddings of any length.""" | |
| def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): | |
| super().__init__(num_positions, embedding_dim) | |
| self.weight = self._init_weight(self.weight) | |
| def _init_weight(out: nn.Parameter): | |
| """ | |
| Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in | |
| the 2nd half of the vector. [dim // 2:] | |
| """ | |
| n_pos, dim = out.shape | |
| position_enc = np.array( | |
| [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)] | |
| ) | |
| out.requires_grad = False # set early to avoid an error in pytorch-1.8+ | |
| sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1 | |
| out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) | |
| out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2])) | |
| out.detach_() | |
| return out | |
| def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0): | |
| """`input_ids_shape` is expected to be [bsz x seqlen].""" | |
| bsz, seq_len = input_ids_shape[:2] | |
| positions = torch.arange( | |
| past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device | |
| ) | |
| return super().forward(positions) | |
| # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Marian | |
| class MarianAttention(nn.Module): | |
| """Multi-headed attention from 'Attention Is All You Need' paper""" | |
| def __init__( | |
| self, | |
| embed_dim: int, | |
| num_heads: int, | |
| dropout: float = 0.0, | |
| is_decoder: bool = False, | |
| bias: bool = True, | |
| ): | |
| super().__init__() | |
| self.embed_dim = embed_dim | |
| self.num_heads = num_heads | |
| self.dropout = dropout | |
| self.head_dim = embed_dim // num_heads | |
| assert ( | |
| self.head_dim * num_heads == self.embed_dim | |
| ), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {num_heads})." | |
| self.scaling = self.head_dim ** -0.5 | |
| self.is_decoder = is_decoder | |
| self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
| return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| key_value_states: Optional[torch.Tensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| layer_head_mask: Optional[torch.Tensor] = None, | |
| output_attentions: bool = False, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| """Input shape: Batch x Time x Channel""" | |
| # if key_value_states are provided this layer is used as a cross-attention layer | |
| # for the decoder | |
| is_cross_attention = key_value_states is not None | |
| bsz, tgt_len, embed_dim = hidden_states.size() | |
| # get query proj | |
| query_states = self.q_proj(hidden_states) * self.scaling | |
| # get key, value proj | |
| if is_cross_attention and past_key_value is not None: | |
| # reuse k,v, cross_attentions | |
| key_states = past_key_value[0] | |
| value_states = past_key_value[1] | |
| elif is_cross_attention: | |
| # cross_attentions | |
| key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
| elif past_key_value is not None: | |
| # reuse k, v, self_attention | |
| key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
| key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
| value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
| else: | |
| # self_attention | |
| key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
| if self.is_decoder: | |
| # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
| # Further calls to cross_attention layer can then reuse all cross-attention | |
| # key/value_states (first "if" case) | |
| # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
| # all previous decoder key/value_states. Further calls to uni-directional self-attention | |
| # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
| # if encoder bi-directional self-attention `past_key_value` is always `None` | |
| past_key_value = (key_states, value_states) | |
| proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
| query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
| key_states = key_states.view(*proj_shape) | |
| value_states = value_states.view(*proj_shape) | |
| src_len = key_states.size(1) | |
| attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
| if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}" | |
| ) | |
| if attention_mask is not None: | |
| if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
| ) | |
| attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
| if layer_head_mask is not None: | |
| if layer_head_mask.size() != (self.num_heads,): | |
| raise ValueError( | |
| f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" | |
| ) | |
| attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| if output_attentions: | |
| # this operation is a bit awkward, but it's required to | |
| # make sure that attn_weights keeps its gradient. | |
| # In order to do so, attn_weights have to be reshaped | |
| # twice and have to be reused in the following | |
| attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
| else: | |
| attn_weights_reshaped = None | |
| attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
| attn_output = torch.bmm(attn_probs, value_states) | |
| if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
| raise ValueError( | |
| f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}" | |
| ) | |
| attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
| attn_output = attn_output.transpose(1, 2) | |
| attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) | |
| attn_output = self.out_proj(attn_output) | |
| return attn_output, attn_weights_reshaped, past_key_value | |
| # Copied from transformers.models.bart.modeling_bart.BartEncoderLayer with Bart->Marian | |
| class MarianEncoderLayer(nn.Module): | |
| def __init__(self, config: MarianConfig): | |
| super().__init__() | |
| self.embed_dim = config.d_model | |
| self.self_attn = MarianAttention( | |
| embed_dim=self.embed_dim, | |
| num_heads=config.encoder_attention_heads, | |
| dropout=config.attention_dropout, | |
| ) | |
| self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
| self.dropout = config.dropout | |
| self.activation_fn = ACT2FN[config.activation_function] | |
| self.activation_dropout = config.activation_dropout | |
| self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) | |
| self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) | |
| self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| layer_head_mask: torch.Tensor, | |
| output_attentions: bool = False, | |
| ): | |
| """ | |
| Args: | |
| hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)` | |
| attention_mask (:obj:`torch.FloatTensor`): attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size | |
| `(encoder_attention_heads,)`. | |
| output_attentions (:obj:`bool`, `optional`): | |
| Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under | |
| returned tensors for more detail. | |
| """ | |
| residual = hidden_states | |
| hidden_states, attn_weights, _ = self.self_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| layer_head_mask=layer_head_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| hidden_states = residual + hidden_states | |
| hidden_states = self.self_attn_layer_norm(hidden_states) | |
| residual = hidden_states | |
| hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
| hidden_states = self.fc2(hidden_states) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| hidden_states = residual + hidden_states | |
| hidden_states = self.final_layer_norm(hidden_states) | |
| if hidden_states.dtype == torch.float16 and ( | |
| torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() | |
| ): | |
| clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
| hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (attn_weights,) | |
| return outputs | |
| # Copied from transformers.models.bart.modeling_bart.BartDecoderLayer with Bart->Marian | |
| class MarianDecoderLayer(nn.Module): | |
| def __init__(self, config: MarianConfig): | |
| super().__init__() | |
| self.embed_dim = config.d_model | |
| self.self_attn = MarianAttention( | |
| embed_dim=self.embed_dim, | |
| num_heads=config.decoder_attention_heads, | |
| dropout=config.attention_dropout, | |
| is_decoder=True, | |
| ) | |
| self.dropout = config.dropout | |
| self.activation_fn = ACT2FN[config.activation_function] | |
| self.activation_dropout = config.activation_dropout | |
| self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
| self.encoder_attn = MarianAttention( | |
| self.embed_dim, | |
| config.decoder_attention_heads, | |
| dropout=config.attention_dropout, | |
| is_decoder=True, | |
| ) | |
| self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
| self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) | |
| self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) | |
| self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| layer_head_mask: Optional[torch.Tensor] = None, | |
| cross_attn_layer_head_mask: Optional[torch.Tensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| output_attentions: Optional[bool] = False, | |
| use_cache: Optional[bool] = True, | |
| ): | |
| """ | |
| Args: | |
| hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
| attention_mask (:obj:`torch.FloatTensor`): attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| encoder_hidden_states (:obj:`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` | |
| encoder_attention_mask (:obj:`torch.FloatTensor`): encoder attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size | |
| `(encoder_attention_heads,)`. | |
| cross_attn_layer_head_mask (:obj:`torch.FloatTensor`): mask for cross-attention heads in a given layer of | |
| size `(decoder_attention_heads,)`. | |
| past_key_value (:obj:`Tuple(torch.FloatTensor)`): cached past key and value projection states | |
| output_attentions (:obj:`bool`, `optional`): | |
| Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under | |
| returned tensors for more detail. | |
| """ | |
| residual = hidden_states | |
| # Self Attention | |
| # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
| self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
| # add present self-attn cache to positions 1,2 of present_key_value tuple | |
| hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
| hidden_states=hidden_states, | |
| past_key_value=self_attn_past_key_value, | |
| attention_mask=attention_mask, | |
| layer_head_mask=layer_head_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| hidden_states = residual + hidden_states | |
| hidden_states = self.self_attn_layer_norm(hidden_states) | |
| # Cross-Attention Block | |
| cross_attn_present_key_value = None | |
| cross_attn_weights = None | |
| if encoder_hidden_states is not None: | |
| residual = hidden_states | |
| # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple | |
| cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | |
| hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( | |
| hidden_states=hidden_states, | |
| key_value_states=encoder_hidden_states, | |
| attention_mask=encoder_attention_mask, | |
| layer_head_mask=cross_attn_layer_head_mask, | |
| past_key_value=cross_attn_past_key_value, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| hidden_states = residual + hidden_states | |
| hidden_states = self.encoder_attn_layer_norm(hidden_states) | |
| # add cross-attn to positions 3,4 of present_key_value tuple | |
| present_key_value = present_key_value + cross_attn_present_key_value | |
| # Fully Connected | |
| residual = hidden_states | |
| hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
| hidden_states = self.fc2(hidden_states) | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| hidden_states = residual + hidden_states | |
| hidden_states = self.final_layer_norm(hidden_states) | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (self_attn_weights, cross_attn_weights) | |
| if use_cache: | |
| outputs += (present_key_value,) | |
| return outputs | |
| class MarianPreTrainedModel(PreTrainedModel): | |
| config_class = MarianConfig | |
| base_model_prefix = "model" | |
| def _init_weights(self, module): | |
| std = self.config.init_std | |
| if isinstance(module, nn.Linear): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, MarianSinusoidalPositionalEmbedding): | |
| pass | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=std) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| def dummy_inputs(self): | |
| pad_token = self.config.pad_token_id | |
| input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) | |
| dummy_inputs = { | |
| "attention_mask": input_ids.ne(pad_token), | |
| "input_ids": input_ids, | |
| "decoder_input_ids": input_ids, | |
| } | |
| return dummy_inputs | |
| MARIAN_START_DOCSTRING = r""" | |
| This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic | |
| methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, | |
| pruning heads etc.) | |
| This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ | |
| subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to | |
| general usage and behavior. | |
| Parameters: | |
| config (:class:`~transformers.MarianConfig`): | |
| Model configuration class with all the parameters of the model. Initializing with a config file does not | |
| load the weights associated with the model, only the configuration. Check out the | |
| :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. | |
| """ | |
| MARIAN_GENERATION_EXAMPLE = r""" | |
| Pytorch version of marian-nmt's transformer.h (c++). Designed for the OPUS-NMT translation checkpoints. | |
| Available models are listed `here <https://huggingface.co/models?search=Helsinki-NLP>`__. | |
| Examples:: | |
| >>> from transformers import MarianTokenizer, MarianMTModel | |
| >>> from typing import List | |
| >>> src = 'fr' # source language | |
| >>> trg = 'en' # target language | |
| >>> sample_text = "où est l'arrêt de bus ?" | |
| >>> model_name = f'Helsinki-NLP/opus-mt-{src}-{trg}' | |
| >>> model = MarianMTModel.from_pretrained(model_name) | |
| >>> tokenizer = MarianTokenizer.from_pretrained(model_name) | |
| >>> batch = tokenizer([sample_text], return_tensors="pt") | |
| >>> gen = model.generate(**batch) | |
| >>> tokenizer.batch_decode(gen, skip_special_tokens=True) | |
| "Where is the bus stop ?" | |
| """ | |
| MARIAN_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
| it. | |
| Indices can be obtained using :class:`~transformers.MarianTokenizer`. See | |
| :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
| details. | |
| `What are input IDs? <../glossary.html#input-ids>`__ | |
| attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| `What are attention masks? <../glossary.html#attention-mask>`__ | |
| decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): | |
| Indices of decoder input sequence tokens in the vocabulary. | |
| Indices can be obtained using :class:`~transformers.MarianTokenizer`. See | |
| :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
| details. | |
| `What are decoder input IDs? <../glossary.html#decoder-input-ids>`__ | |
| Marian uses the :obj:`pad_token_id` as the starting token for :obj:`decoder_input_ids` generation. If | |
| :obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see | |
| :obj:`past_key_values`). | |
| decoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): | |
| Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will | |
| also be used by default. | |
| head_mask (:obj:`torch.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`): | |
| Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| decoder_head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): | |
| Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): | |
| Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in ``[0, | |
| 1]``: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`): | |
| Tuple consists of (:obj:`last_hidden_state`, `optional`: :obj:`hidden_states`, `optional`: | |
| :obj:`attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)`, | |
| `optional`) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the | |
| cross-attention of the decoder. | |
| past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): | |
| Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 tensors | |
| of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of | |
| shape :obj:`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
| Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
| blocks) that can be used (see :obj:`past_key_values` input) to speed up sequential decoding. | |
| If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` | |
| (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` | |
| instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size, sequence_length)`. | |
| inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
| Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
| This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
| vectors than the model's internal embedding lookup matrix. | |
| decoder_inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, target_sequence_length, hidden_size)`, `optional`): | |
| Optionally, instead of passing :obj:`decoder_input_ids` you can choose to directly pass an embedded | |
| representation. If :obj:`past_key_values` is used, optionally only the last :obj:`decoder_inputs_embeds` | |
| have to be input (see :obj:`past_key_values`). This is useful if you want more control over how to convert | |
| :obj:`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. | |
| If :obj:`decoder_input_ids` and :obj:`decoder_inputs_embeds` are both unset, :obj:`decoder_inputs_embeds` | |
| takes the value of :obj:`inputs_embeds`. | |
| use_cache (:obj:`bool`, `optional`): | |
| If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up | |
| decoding (see :obj:`past_key_values`). | |
| output_attentions (:obj:`bool`, `optional`): | |
| Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
| tensors for more detail. | |
| output_hidden_states (:obj:`bool`, `optional`): | |
| Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
| more detail. | |
| return_dict (:obj:`bool`, `optional`): | |
| Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
| """ | |
| class MarianEncoder(MarianPreTrainedModel): | |
| """ | |
| Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a | |
| :class:`MarianEncoderLayer`. | |
| Args: | |
| config: MarianConfig | |
| embed_tokens (nn.Embedding): output embedding | |
| """ | |
| def __init__(self, config: MarianConfig, embed_tokens: Optional[nn.Embedding] = None): | |
| super().__init__(config) | |
| self.dropout = config.dropout | |
| self.layerdrop = config.encoder_layerdrop | |
| embed_dim = config.d_model | |
| self.padding_idx = config.pad_token_id | |
| self.max_source_positions = config.max_position_embeddings | |
| self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 | |
| if embed_tokens is not None: | |
| self.embed_tokens = embed_tokens | |
| else: | |
| self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) | |
| self.embed_positions = MarianSinusoidalPositionalEmbedding( | |
| config.max_position_embeddings, | |
| embed_dim, | |
| self.padding_idx, | |
| ) | |
| self.layers = nn.ModuleList([MarianEncoderLayer(config) for _ in range(config.encoder_layers)]) | |
| self.init_weights() | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| Args: | |
| input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
| provide it. | |
| Indices can be obtained using :class:`~transformers.MarianTokenizer`. See | |
| :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` | |
| for details. | |
| `What are input IDs? <../glossary.html#input-ids>`__ | |
| attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| `What are attention masks? <../glossary.html#attention-mask>`__ | |
| head_mask (:obj:`torch.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`): | |
| Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
| Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded | |
| representation. This is useful if you want more control over how to convert :obj:`input_ids` indices | |
| into associated vectors than the model's internal embedding lookup matrix. | |
| output_attentions (:obj:`bool`, `optional`): | |
| Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under | |
| returned tensors for more detail. | |
| output_hidden_states (:obj:`bool`, `optional`): | |
| Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors | |
| for more detail. | |
| return_dict (:obj:`bool`, `optional`): | |
| Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # retrieve input_ids and inputs_embeds | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| input_shape = input_ids.size() | |
| input_ids = input_ids.view(-1, input_shape[-1]) | |
| elif inputs_embeds is not None: | |
| input_shape = inputs_embeds.size()[:-1] | |
| else: | |
| raise ValueError("You have to specify either input_ids or inputs_embeds") | |
| if inputs_embeds is None: | |
| inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale | |
| embed_pos = self.embed_positions(input_shape) | |
| hidden_states = inputs_embeds + embed_pos | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| # expand attention_mask | |
| if attention_mask is not None: | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) | |
| encoder_states = () if output_hidden_states else None | |
| all_attentions = () if output_attentions else None | |
| # check if head_mask has a correct number of layers specified if desired | |
| if head_mask is not None: | |
| assert head_mask.size()[0] == ( | |
| len(self.layers) | |
| ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." | |
| for idx, encoder_layer in enumerate(self.layers): | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
| dropout_probability = random.uniform(0, 1) | |
| if self.training and (dropout_probability < self.layerdrop): # skip the layer | |
| layer_outputs = (None, None) | |
| else: | |
| if getattr(self.config, "gradient_checkpointing", False) and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs, output_attentions) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(encoder_layer), | |
| hidden_states, | |
| attention_mask, | |
| (head_mask[idx] if head_mask is not None else None), | |
| ) | |
| else: | |
| layer_outputs = encoder_layer( | |
| hidden_states, | |
| attention_mask, | |
| layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if output_attentions: | |
| all_attentions = all_attentions + (layer_outputs[1],) | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
| ) | |
| class MarianDecoder(MarianPreTrainedModel): | |
| """ | |
| Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`MarianDecoderLayer` | |
| Args: | |
| config: MarianConfig | |
| embed_tokens (nn.Embedding): output embedding | |
| """ | |
| def __init__(self, config: MarianConfig, embed_tokens: Optional[nn.Embedding] = None): | |
| super().__init__(config) | |
| self.dropout = config.dropout | |
| self.layerdrop = config.decoder_layerdrop | |
| self.padding_idx = config.pad_token_id | |
| self.max_target_positions = config.max_position_embeddings | |
| self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 | |
| if embed_tokens is not None: | |
| self.embed_tokens = embed_tokens | |
| else: | |
| self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) | |
| self.embed_positions = MarianSinusoidalPositionalEmbedding( | |
| config.max_position_embeddings, | |
| config.d_model, | |
| self.padding_idx, | |
| ) | |
| self.layers = nn.ModuleList([MarianDecoderLayer(config) for _ in range(config.decoder_layers)]) | |
| self.init_weights() | |
| def get_input_embeddings(self): | |
| return self.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.embed_tokens = value | |
| # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask | |
| def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): | |
| # create causal mask | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| combined_attention_mask = None | |
| if input_shape[-1] > 1: | |
| combined_attention_mask = _make_causal_mask( | |
| input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length | |
| ).to(self.device) | |
| if attention_mask is not None: | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) | |
| combined_attention_mask = ( | |
| expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask | |
| ) | |
| return combined_attention_mask | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| head_mask=None, | |
| cross_attn_head_mask=None, | |
| past_key_values=None, | |
| inputs_embeds=None, | |
| use_cache=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| Args: | |
| input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
| provide it. | |
| Indices can be obtained using :class:`~transformers.MarianTokenizer`. See | |
| :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` | |
| for details. | |
| `What are input IDs? <../glossary.html#input-ids>`__ | |
| attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| `What are attention masks? <../glossary.html#attention-mask>`__ | |
| encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, encoder_sequence_length, hidden_size)`, `optional`): | |
| Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention | |
| of the decoder. | |
| encoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, encoder_sequence_length)`, `optional`): | |
| Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values | |
| selected in ``[0, 1]``: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| `What are attention masks? <../glossary.html#attention-mask>`__ | |
| head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): | |
| Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): | |
| Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing | |
| cross-attention on hidden heads. Mask values selected in ``[0, 1]``: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): | |
| Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 | |
| tensors of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional | |
| tensors of shape :obj:`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
| Contains pre-computed hidden-states (key and values in the self-attention blocks and in the | |
| cross-attention blocks) that can be used (see :obj:`past_key_values` input) to speed up sequential | |
| decoding. | |
| If :obj:`past_key_values` are used, the user can optionally input only the last | |
| :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of | |
| shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size, | |
| sequence_length)`. | |
| inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
| Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded | |
| representation. This is useful if you want more control over how to convert :obj:`input_ids` indices | |
| into associated vectors than the model's internal embedding lookup matrix. | |
| output_attentions (:obj:`bool`, `optional`): | |
| Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under | |
| returned tensors for more detail. | |
| output_hidden_states (:obj:`bool`, `optional`): | |
| Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors | |
| for more detail. | |
| return_dict (:obj:`bool`, `optional`): | |
| Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # retrieve input_ids and inputs_embeds | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| input_shape = input_ids.size() | |
| input_ids = input_ids.view(-1, input_shape[-1]) | |
| elif inputs_embeds is not None: | |
| input_shape = inputs_embeds.size()[:-1] | |
| else: | |
| raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | |
| # past_key_values_length | |
| past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
| if inputs_embeds is None: | |
| inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale | |
| attention_mask = self._prepare_decoder_attention_mask( | |
| attention_mask, input_shape, inputs_embeds, past_key_values_length | |
| ) | |
| # expand encoder attention mask | |
| if encoder_hidden_states is not None and encoder_attention_mask is not None: | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) | |
| # embed positions | |
| positions = self.embed_positions(input_shape, past_key_values_length) | |
| hidden_states = inputs_embeds + positions | |
| hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
| # decoder layers | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attns = () if output_attentions else None | |
| all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None | |
| next_decoder_cache = () if use_cache else None | |
| # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired | |
| for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): | |
| if attn_mask is not None: | |
| assert attn_mask.size()[0] == ( | |
| len(self.layers) | |
| ), f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." | |
| for idx, decoder_layer in enumerate(self.layers): | |
| # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| dropout_probability = random.uniform(0, 1) | |
| if self.training and (dropout_probability < self.layerdrop): | |
| continue | |
| past_key_value = past_key_values[idx] if past_key_values is not None else None | |
| if getattr(self.config, "gradient_checkpointing", False) and self.training: | |
| if use_cache: | |
| logger.warning( | |
| "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " | |
| "`use_cache=False`..." | |
| ) | |
| use_cache = False | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| # None for past_key_value | |
| return module(*inputs, output_attentions, use_cache) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(decoder_layer), | |
| hidden_states, | |
| attention_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| head_mask[idx] if head_mask is not None else None, | |
| cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, | |
| None, | |
| ) | |
| else: | |
| layer_outputs = decoder_layer( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
| cross_attn_layer_head_mask=( | |
| cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None | |
| ), | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if use_cache: | |
| next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) | |
| if output_attentions: | |
| all_self_attns += (layer_outputs[1],) | |
| if encoder_hidden_states is not None: | |
| all_cross_attentions += (layer_outputs[2],) | |
| # add hidden states from the last decoder layer | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| next_cache = next_decoder_cache if use_cache else None | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] | |
| if v is not None | |
| ) | |
| return BaseModelOutputWithPastAndCrossAttentions( | |
| last_hidden_state=hidden_states, | |
| past_key_values=next_cache, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attns, | |
| cross_attentions=all_cross_attentions, | |
| ) | |
| class MarianModel(MarianPreTrainedModel): | |
| def __init__(self, config: MarianConfig): | |
| super().__init__(config) | |
| padding_idx, vocab_size = config.pad_token_id, config.vocab_size | |
| self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) | |
| self.encoder = MarianEncoder(config, self.shared) | |
| self.decoder = MarianDecoder(config, self.shared) | |
| self.init_weights() | |
| def get_input_embeddings(self): | |
| return self.shared | |
| def set_input_embeddings(self, value): | |
| self.shared = value | |
| self.encoder.embed_tokens = self.shared | |
| self.decoder.embed_tokens = self.shared | |
| def get_encoder(self): | |
| return self.encoder | |
| def get_decoder(self): | |
| return self.decoder | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| decoder_input_ids=None, | |
| decoder_attention_mask=None, | |
| head_mask=None, | |
| decoder_head_mask=None, | |
| cross_attn_head_mask=None, | |
| encoder_outputs=None, | |
| past_key_values=None, | |
| inputs_embeds=None, | |
| decoder_inputs_embeds=None, | |
| use_cache=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| Returns: | |
| Example:: | |
| >>> from transformers import MarianTokenizer, MarianModel | |
| >>> tokenizer = MarianTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-de') | |
| >>> model = MarianModel.from_pretrained('Helsinki-NLP/opus-mt-en-de') | |
| >>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1 | |
| >>> decoder_input_ids = tokenizer("<pad> Studien haben gezeigt dass es hilfreich ist einen Hund zu besitzen", | |
| ... return_tensors="pt", add_special_tokens=False).input_ids # Batch size 1 | |
| >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) | |
| >>> last_hidden_states = outputs.last_hidden_state | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if encoder_outputs is None: | |
| encoder_outputs = self.encoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True | |
| elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
| encoder_outputs = BaseModelOutput( | |
| last_hidden_state=encoder_outputs[0], | |
| hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
| attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
| ) | |
| # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) | |
| decoder_outputs = self.decoder( | |
| input_ids=decoder_input_ids, | |
| attention_mask=decoder_attention_mask, | |
| encoder_hidden_states=encoder_outputs[0], | |
| encoder_attention_mask=attention_mask, | |
| head_mask=decoder_head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| past_key_values=past_key_values, | |
| inputs_embeds=decoder_inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| if not return_dict: | |
| return decoder_outputs + encoder_outputs | |
| return Seq2SeqModelOutput( | |
| last_hidden_state=decoder_outputs.last_hidden_state, | |
| past_key_values=decoder_outputs.past_key_values, | |
| decoder_hidden_states=decoder_outputs.hidden_states, | |
| decoder_attentions=decoder_outputs.attentions, | |
| cross_attentions=decoder_outputs.cross_attentions, | |
| encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
| encoder_hidden_states=encoder_outputs.hidden_states, | |
| encoder_attentions=encoder_outputs.attentions, | |
| ) | |
| class MarianMTModel(MarianPreTrainedModel): | |
| base_model_prefix = "model" | |
| _keys_to_ignore_on_load_missing = [ | |
| r"final_logits_bias", | |
| r"encoder\.version", | |
| r"decoder\.version", | |
| r"lm_head\.weight", | |
| r"embed_positions", | |
| ] | |
| _keys_to_ignore_on_save = [ | |
| "model.encoder.embed_positions.weight", | |
| "model.decoder.embed_positions.weight", | |
| ] | |
| def __init__(self, config: MarianConfig): | |
| super().__init__(config) | |
| self.model = MarianModel(config) | |
| self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) | |
| self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) | |
| self.init_weights() | |
| def get_encoder(self): | |
| return self.model.get_encoder() | |
| def get_decoder(self): | |
| return self.model.get_decoder() | |
| def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding: | |
| new_embeddings = super().resize_token_embeddings(new_num_tokens) | |
| self._resize_final_logits_bias(new_num_tokens) | |
| return new_embeddings | |
| def _resize_final_logits_bias(self, new_num_tokens: int) -> None: | |
| old_num_tokens = self.final_logits_bias.shape[-1] | |
| if new_num_tokens <= old_num_tokens: | |
| new_bias = self.final_logits_bias[:, :new_num_tokens] | |
| else: | |
| extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) | |
| new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) | |
| self.register_buffer("final_logits_bias", new_bias) | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| decoder_input_ids=None, | |
| decoder_attention_mask=None, | |
| head_mask=None, | |
| decoder_head_mask=None, | |
| cross_attn_head_mask=None, | |
| encoder_outputs=None, | |
| past_key_values=None, | |
| inputs_embeds=None, | |
| decoder_inputs_embeds=None, | |
| labels=None, | |
| use_cache=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Labels for computing the masked language modeling loss. Indices should either be in ``[0, ..., | |
| config.vocab_size]`` or -100 (see ``input_ids`` docstring). Tokens with indices set to ``-100`` are ignored | |
| (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``. | |
| Returns: | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if labels is not None: | |
| if decoder_input_ids is None: | |
| decoder_input_ids = shift_tokens_right( | |
| labels, self.config.pad_token_id, self.config.decoder_start_token_id | |
| ) | |
| outputs = self.model( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| decoder_input_ids=decoder_input_ids, | |
| encoder_outputs=encoder_outputs, | |
| decoder_attention_mask=decoder_attention_mask, | |
| head_mask=head_mask, | |
| decoder_head_mask=decoder_head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| decoder_inputs_embeds=decoder_inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias | |
| masked_lm_loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) | |
| if not return_dict: | |
| output = (lm_logits,) + outputs[1:] | |
| return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
| return Seq2SeqLMOutput( | |
| loss=masked_lm_loss, | |
| logits=lm_logits, | |
| past_key_values=outputs.past_key_values, | |
| decoder_hidden_states=outputs.decoder_hidden_states, | |
| decoder_attentions=outputs.decoder_attentions, | |
| cross_attentions=outputs.cross_attentions, | |
| encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
| encoder_hidden_states=outputs.encoder_hidden_states, | |
| encoder_attentions=outputs.encoder_attentions, | |
| ) | |
| def prepare_inputs_for_generation( | |
| self, | |
| decoder_input_ids, | |
| past=None, | |
| attention_mask=None, | |
| head_mask=None, | |
| decoder_head_mask=None, | |
| cross_attn_head_mask=None, | |
| use_cache=None, | |
| encoder_outputs=None, | |
| **kwargs | |
| ): | |
| # cut decoder_input_ids if past is used | |
| if past is not None: | |
| decoder_input_ids = decoder_input_ids[:, -1:] | |
| return { | |
| "input_ids": None, # encoder_outputs is defined. input_ids not needed | |
| "encoder_outputs": encoder_outputs, | |
| "past_key_values": past, | |
| "decoder_input_ids": decoder_input_ids, | |
| "attention_mask": attention_mask, | |
| "head_mask": head_mask, | |
| "decoder_head_mask": decoder_head_mask, | |
| "cross_attn_head_mask": cross_attn_head_mask, | |
| "use_cache": use_cache, # change this to avoid caching (presumably for debugging) | |
| } | |
| def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
| return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) | |
| def adjust_logits_during_generation(self, logits, cur_len): | |
| logits[:, self.config.pad_token_id] = float("-inf") # never predict pad token. | |
| return logits | |
| def _reorder_cache(past, beam_idx): | |
| reordered_past = () | |
| for layer_past in past: | |
| # cached cross_attention states don't have to be reordered -> they are always the same | |
| reordered_past += ( | |
| tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], | |
| ) | |
| return reordered_past | |
| # Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->Marian | |
| class MarianDecoderWrapper(MarianPreTrainedModel): | |
| """ | |
| This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is | |
| used in combination with the :class:`~transformers.EncoderDecoderModel` framework. | |
| """ | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.decoder = MarianDecoder(config) | |
| def forward(self, *args, **kwargs): | |
| return self.decoder(*args, **kwargs) | |
| # Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Marian | |
| class MarianForCausalLM(MarianPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| config = copy.deepcopy(config) | |
| config.is_decoder = True | |
| config.is_encoder_decoder = False | |
| self.model = MarianDecoderWrapper(config) | |
| self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| self.init_weights() | |
| def get_input_embeddings(self): | |
| return self.model.decoder.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.model.decoder.embed_tokens = value | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| def set_decoder(self, decoder): | |
| self.model.decoder = decoder | |
| def get_decoder(self): | |
| return self.model.decoder | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| head_mask=None, | |
| cross_attn_head_mask=None, | |
| past_key_values=None, | |
| inputs_embeds=None, | |
| labels=None, | |
| use_cache=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| Args: | |
| input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
| provide it. | |
| Indices can be obtained using :class:`~transformers.MarianTokenizer`. See | |
| :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` | |
| for details. | |
| `What are input IDs? <../glossary.html#input-ids>`__ | |
| attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| `What are attention masks? <../glossary.html#attention-mask>`__ | |
| encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
| Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention | |
| if the model is configured as a decoder. | |
| encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used | |
| in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: | |
| head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): | |
| Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): | |
| Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): | |
| Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 | |
| tensors of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional | |
| tensors of shape :obj:`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two | |
| additional tensors are only required when the model is used as a decoder in a Sequence to Sequence | |
| model. | |
| Contains pre-computed hidden-states (key and values in the self-attention blocks and in the | |
| cross-attention blocks) that can be used (see :obj:`past_key_values` input) to speed up sequential | |
| decoding. | |
| If :obj:`past_key_values` are used, the user can optionally input only the last ``decoder_input_ids`` | |
| (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` | |
| instead of all ``decoder_input_ids`` of shape :obj:`(batch_size, sequence_length)`. | |
| labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Labels for computing the masked language modeling loss. Indices should either be in ``[0, ..., | |
| config.vocab_size]`` or -100 (see ``input_ids`` docstring). Tokens with indices set to ``-100`` are | |
| ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., | |
| config.vocab_size]``. | |
| use_cache (:obj:`bool`, `optional`): | |
| If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up | |
| decoding (see :obj:`past_key_values`). | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| output_attentions (:obj:`bool`, `optional`): | |
| Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under | |
| returned tensors for more detail. | |
| output_hidden_states (:obj:`bool`, `optional`): | |
| Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors | |
| for more detail. | |
| return_dict (:obj:`bool`, `optional`): | |
| Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
| Returns: | |
| Example:: | |
| >>> from transformers import MarianTokenizer, MarianForCausalLM | |
| >>> tokenizer = MarianTokenizer.from_pretrained('facebook/bart-large') | |
| >>> model = MarianForCausalLM.from_pretrained('facebook/bart-large', add_cross_attention=False) | |
| >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." | |
| >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> last_hidden_states = outputs.last_hidden_state | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
| outputs = self.model.decoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| head_mask=head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| logits = self.lm_head(outputs[0]) | |
| loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) | |
| if not return_dict: | |
| output = (logits,) + outputs[1:] | |
| return (loss,) + output if loss is not None else output | |
| return CausalLMOutputWithCrossAttentions( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=outputs.past_key_values, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| cross_attentions=outputs.cross_attentions, | |
| ) | |
| def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, use_cache=None, **kwargs): | |
| # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly | |
| if attention_mask is None: | |
| attention_mask = input_ids.new_ones(input_ids.shape) | |
| if past: | |
| input_ids = input_ids[:, -1:] | |
| # first step, decoder_cached_states are empty | |
| return { | |
| "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed | |
| "attention_mask": attention_mask, | |
| "past_key_values": past, | |
| "use_cache": use_cache, | |
| } | |
| def _reorder_cache(past, beam_idx): | |
| reordered_past = () | |
| for layer_past in past: | |
| reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) | |
| return reordered_past | |