Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2021 Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch LED model. """ | |
import math | |
import random | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from ...activations import ACT2FN | |
from ...file_utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_end_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
replace_return_docstrings, | |
) | |
from ...modeling_outputs import ( | |
BaseModelOutputWithPastAndCrossAttentions, | |
Seq2SeqLMOutput, | |
Seq2SeqModelOutput, | |
Seq2SeqQuestionAnsweringModelOutput, | |
Seq2SeqSequenceClassifierOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...utils import logging | |
from .configuration_led import LEDConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "allenai/led-base-16384" | |
_CONFIG_FOR_DOC = "LEDConfig" | |
_TOKENIZER_FOR_DOC = "LEDTokenizer" | |
LED_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"allenai/led-base-16384", | |
# See all LED models at https://huggingface.co/models?filter=led | |
] | |
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): | |
""" | |
Shift input ids one token to the right. | |
""" | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() | |
shifted_input_ids[:, 0] = decoder_start_token_id | |
assert pad_token_id is not None, "config.pad_token_id has to be defined." | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
return shifted_input_ids | |
def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0): | |
""" | |
Make causal mask used for bi-directional self-attention. | |
""" | |
bsz, tgt_len = input_ids_shape | |
mask = torch.full((tgt_len, tgt_len), float("-inf")) | |
mask_cond = torch.arange(mask.size(-1)) | |
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
mask = mask.to(dtype) | |
if past_key_values_length > 0: | |
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1) | |
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | |
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
""" | |
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
""" | |
bsz, src_len = mask.size() | |
tgt_len = tgt_len if tgt_len is not None else src_len | |
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
inverted_mask = 1.0 - expanded_mask | |
expanded_attention_mask = inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min) | |
# make sure that global_attn_mask is positive | |
expanded_attention_mask = expanded_attention_mask * inverted_mask | |
return expanded_attention_mask | |
class LEDLearnedPositionalEmbedding(nn.Embedding): | |
""" | |
This module learns positional embeddings up to a fixed maximum size. | |
""" | |
def __init__(self, num_embeddings: int, embedding_dim: int): | |
super().__init__(num_embeddings, embedding_dim) | |
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0): | |
"""`input_ids_shape` is expected to be [bsz x seqlen].""" | |
bsz, seq_len = input_ids_shape[:2] | |
positions = torch.arange( | |
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device | |
) | |
return super().forward(positions) | |
# Copied from transformers.models.longformer.modeling_longformer.LongformerSelfAttention with Longformer->LEDEncoder | |
class LEDEncoderSelfAttention(nn.Module): | |
def __init__(self, config, layer_id): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0: | |
raise ValueError( | |
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({config.num_attention_heads})" | |
) | |
self.num_heads = config.num_attention_heads | |
self.head_dim = int(config.hidden_size / config.num_attention_heads) | |
self.embed_dim = config.hidden_size | |
self.query = nn.Linear(config.hidden_size, self.embed_dim) | |
self.key = nn.Linear(config.hidden_size, self.embed_dim) | |
self.value = nn.Linear(config.hidden_size, self.embed_dim) | |
# separate projection layers for tokens with global attention | |
self.query_global = nn.Linear(config.hidden_size, self.embed_dim) | |
self.key_global = nn.Linear(config.hidden_size, self.embed_dim) | |
self.value_global = nn.Linear(config.hidden_size, self.embed_dim) | |
self.dropout = config.attention_probs_dropout_prob | |
self.layer_id = layer_id | |
attention_window = config.attention_window[self.layer_id] | |
assert ( | |
attention_window % 2 == 0 | |
), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}" | |
assert ( | |
attention_window > 0 | |
), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}" | |
self.one_sided_attn_window_size = attention_window // 2 | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
layer_head_mask=None, | |
is_index_masked=None, | |
is_index_global_attn=None, | |
is_global_attn=None, | |
output_attentions=False, | |
): | |
""" | |
:class:`LEDEncoderSelfAttention` expects `len(hidden_states)` to be multiple of `attention_window`. Padding to | |
`attention_window` happens in :meth:`LEDEncoderModel.forward` to avoid redoing the padding on each layer. | |
The `attention_mask` is changed in :meth:`LEDEncoderModel.forward` from 0, 1, 2 to: | |
* -10000: no attention | |
* 0: local attention | |
* +10000: global attention | |
""" | |
hidden_states = hidden_states.transpose(0, 1) | |
# project hidden states | |
query_vectors = self.query(hidden_states) | |
key_vectors = self.key(hidden_states) | |
value_vectors = self.value(hidden_states) | |
seq_len, batch_size, embed_dim = hidden_states.size() | |
assert ( | |
embed_dim == self.embed_dim | |
), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}" | |
# normalize query | |
query_vectors /= math.sqrt(self.head_dim) | |
query_vectors = query_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) | |
key_vectors = key_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) | |
attn_scores = self._sliding_chunks_query_key_matmul( | |
query_vectors, key_vectors, self.one_sided_attn_window_size | |
) | |
# values to pad for attention probs | |
remove_from_windowed_attention_mask = (attention_mask != 0)[:, :, None, None] | |
# cast to fp32/fp16 then replace 1's with -inf | |
float_mask = remove_from_windowed_attention_mask.type_as(query_vectors).masked_fill( | |
remove_from_windowed_attention_mask, -10000.0 | |
) | |
# diagonal mask with zeros everywhere and -inf inplace of padding | |
diagonal_mask = self._sliding_chunks_query_key_matmul( | |
float_mask.new_ones(size=float_mask.size()), float_mask, self.one_sided_attn_window_size | |
) | |
# pad local attention probs | |
attn_scores += diagonal_mask | |
assert list(attn_scores.size()) == [ | |
batch_size, | |
seq_len, | |
self.num_heads, | |
self.one_sided_attn_window_size * 2 + 1, | |
], f"local_attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads}, {self.one_sided_attn_window_size * 2 + 1}), but is of size {attn_scores.size()}" | |
# compute local attention probs from global attention keys and contact over window dim | |
if is_global_attn: | |
# compute global attn indices required through out forward fn | |
( | |
max_num_global_attn_indices, | |
is_index_global_attn_nonzero, | |
is_local_index_global_attn_nonzero, | |
is_local_index_no_global_attn_nonzero, | |
) = self._get_global_attn_indices(is_index_global_attn) | |
# calculate global attn probs from global key | |
global_key_attn_scores = self._concat_with_global_key_attn_probs( | |
query_vectors=query_vectors, | |
key_vectors=key_vectors, | |
max_num_global_attn_indices=max_num_global_attn_indices, | |
is_index_global_attn_nonzero=is_index_global_attn_nonzero, | |
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, | |
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, | |
) | |
# concat to local_attn_probs | |
# (batch_size, seq_len, num_heads, extra attention count + 2*window+1) | |
attn_scores = torch.cat((global_key_attn_scores, attn_scores), dim=-1) | |
# free memory | |
del global_key_attn_scores | |
attn_probs = nn.functional.softmax( | |
attn_scores, dim=-1, dtype=torch.float32 | |
) # use fp32 for numerical stability | |
if layer_head_mask is not None: | |
assert layer_head_mask.size() == ( | |
self.num_heads, | |
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" | |
attn_probs = layer_head_mask.view(1, 1, -1, 1) * attn_probs | |
# softmax sometimes inserts NaN if all positions are masked, replace them with 0 | |
attn_probs = torch.masked_fill(attn_probs, is_index_masked[:, :, None, None], 0.0) | |
attn_probs = attn_probs.type_as(attn_scores) | |
# free memory | |
del attn_scores | |
# apply dropout | |
attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training) | |
value_vectors = value_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) | |
# compute local attention output with global attention value and add | |
if is_global_attn: | |
# compute sum of global and local attn | |
attn_output = self._compute_attn_output_with_global_indices( | |
value_vectors=value_vectors, | |
attn_probs=attn_probs, | |
max_num_global_attn_indices=max_num_global_attn_indices, | |
is_index_global_attn_nonzero=is_index_global_attn_nonzero, | |
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, | |
) | |
else: | |
# compute local attn only | |
attn_output = self._sliding_chunks_matmul_attn_probs_value( | |
attn_probs, value_vectors, self.one_sided_attn_window_size | |
) | |
assert attn_output.size() == (batch_size, seq_len, self.num_heads, self.head_dim), "Unexpected size" | |
attn_output = attn_output.transpose(0, 1).reshape(seq_len, batch_size, embed_dim).contiguous() | |
# compute value for global attention and overwrite to attention output | |
# TODO: remove the redundant computation | |
if is_global_attn: | |
global_attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden( | |
hidden_states=hidden_states, | |
max_num_global_attn_indices=max_num_global_attn_indices, | |
layer_head_mask=layer_head_mask, | |
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, | |
is_index_global_attn_nonzero=is_index_global_attn_nonzero, | |
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, | |
is_index_masked=is_index_masked, | |
) | |
# get only non zero global attn output | |
nonzero_global_attn_output = global_attn_output[ | |
is_local_index_global_attn_nonzero[0], :, is_local_index_global_attn_nonzero[1] | |
] | |
# overwrite values with global attention | |
attn_output[is_index_global_attn_nonzero[::-1]] = nonzero_global_attn_output.view( | |
len(is_local_index_global_attn_nonzero[0]), -1 | |
) | |
# The attention weights for tokens with global attention are | |
# just filler values, they were never used to compute the output. | |
# Fill with 0 now, the correct values are in 'global_attn_probs'. | |
attn_probs[is_index_global_attn_nonzero] = 0 | |
outputs = (attn_output.transpose(0, 1),) | |
if output_attentions: | |
outputs += (attn_probs,) | |
return outputs + (global_attn_probs,) if (is_global_attn and output_attentions) else outputs | |
def _pad_and_transpose_last_two_dims(hidden_states_padded, padding): | |
"""pads rows and then flips rows and columns""" | |
hidden_states_padded = nn.functional.pad( | |
hidden_states_padded, padding | |
) # padding value is not important because it will be overwritten | |
hidden_states_padded = hidden_states_padded.view( | |
*hidden_states_padded.size()[:-2], hidden_states_padded.size(-1), hidden_states_padded.size(-2) | |
) | |
return hidden_states_padded | |
def _pad_and_diagonalize(chunked_hidden_states): | |
""" | |
shift every row 1 step right, converting columns into diagonals. | |
Example:: | |
chunked_hidden_states: [ 0.4983, 2.6918, -0.0071, 1.0492, | |
-1.8348, 0.7672, 0.2986, 0.0285, | |
-0.7584, 0.4206, -0.0405, 0.1599, | |
2.0514, -1.1600, 0.5372, 0.2629 ] | |
window_overlap = num_rows = 4 | |
(pad & diagonalize) => | |
[ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000 | |
0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 | |
0.0000, 0.0000, -0.7584, 0.4206, -0.0405, 0.1599, 0.0000 | |
0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ] | |
""" | |
total_num_heads, num_chunks, window_overlap, hidden_dim = chunked_hidden_states.size() | |
chunked_hidden_states = nn.functional.pad( | |
chunked_hidden_states, (0, window_overlap + 1) | |
) # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten | |
chunked_hidden_states = chunked_hidden_states.view( | |
total_num_heads, num_chunks, -1 | |
) # total_num_heads x num_chunks x window_overlap*window_overlap+window_overlap | |
chunked_hidden_states = chunked_hidden_states[ | |
:, :, :-window_overlap | |
] # total_num_heads x num_chunks x window_overlap*window_overlap | |
chunked_hidden_states = chunked_hidden_states.view( | |
total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim | |
) | |
chunked_hidden_states = chunked_hidden_states[:, :, :, :-1] | |
return chunked_hidden_states | |
def _chunk(hidden_states, window_overlap): | |
"""convert into overlapping chunks. Chunk size = 2w, overlap size = w""" | |
# non-overlapping chunks of size = 2w | |
hidden_states = hidden_states.view( | |
hidden_states.size(0), | |
hidden_states.size(1) // (window_overlap * 2), | |
window_overlap * 2, | |
hidden_states.size(2), | |
) | |
# use `as_strided` to make the chunks overlap with an overlap size = window_overlap | |
chunk_size = list(hidden_states.size()) | |
chunk_size[1] = chunk_size[1] * 2 - 1 | |
chunk_stride = list(hidden_states.stride()) | |
chunk_stride[1] = chunk_stride[1] // 2 | |
return hidden_states.as_strided(size=chunk_size, stride=chunk_stride) | |
def _mask_invalid_locations(input_tensor, affected_seq_len) -> torch.Tensor: | |
beginning_mask_2d = input_tensor.new_ones(affected_seq_len, affected_seq_len + 1).tril().flip(dims=[0]) | |
beginning_mask = beginning_mask_2d[None, :, None, :] | |
ending_mask = beginning_mask.flip(dims=(1, 3)) | |
beginning_input = input_tensor[:, :affected_seq_len, :, : affected_seq_len + 1] | |
beginning_mask = beginning_mask.expand(beginning_input.size()) | |
beginning_input.masked_fill_(beginning_mask == 1, -float("inf")) # `== 1` converts to bool or uint8 | |
ending_input = input_tensor[:, -affected_seq_len:, :, -(affected_seq_len + 1) :] | |
ending_mask = ending_mask.expand(ending_input.size()) | |
ending_input.masked_fill_(ending_mask == 1, -float("inf")) # `== 1` converts to bool or uint8 | |
def _sliding_chunks_query_key_matmul(self, query: torch.Tensor, key: torch.Tensor, window_overlap: int): | |
""" | |
Matrix multiplication of query and key tensors using with a sliding window attention pattern. This | |
implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained LEDEncoder) with an | |
overlap of size window_overlap | |
""" | |
batch_size, seq_len, num_heads, head_dim = query.size() | |
assert ( | |
seq_len % (window_overlap * 2) == 0 | |
), f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}" | |
assert query.size() == key.size() | |
chunks_count = seq_len // window_overlap - 1 | |
# group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2 | |
query = query.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) | |
key = key.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) | |
query = self._chunk(query, window_overlap) | |
key = self._chunk(key, window_overlap) | |
# matrix multiplication | |
# bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim | |
# bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim | |
# bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap | |
diagonal_chunked_attention_scores = torch.einsum("bcxd,bcyd->bcxy", (query, key)) # multiply | |
# convert diagonals into columns | |
diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims( | |
diagonal_chunked_attention_scores, padding=(0, 0, 0, 1) | |
) | |
# allocate space for the overall attention matrix where the chunks are combined. The last dimension | |
# has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to | |
# window_overlap previous words). The following column is attention score from each word to itself, then | |
# followed by window_overlap columns for the upper triangle. | |
diagonal_attention_scores = diagonal_chunked_attention_scores.new_empty( | |
(batch_size * num_heads, chunks_count + 1, window_overlap, window_overlap * 2 + 1) | |
) | |
# copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions | |
# - copying the main diagonal and the upper triangle | |
diagonal_attention_scores[:, :-1, :, window_overlap:] = diagonal_chunked_attention_scores[ | |
:, :, :window_overlap, : window_overlap + 1 | |
] | |
diagonal_attention_scores[:, -1, :, window_overlap:] = diagonal_chunked_attention_scores[ | |
:, -1, window_overlap:, : window_overlap + 1 | |
] | |
# - copying the lower triangle | |
diagonal_attention_scores[:, 1:, :, :window_overlap] = diagonal_chunked_attention_scores[ | |
:, :, -(window_overlap + 1) : -1, window_overlap + 1 : | |
] | |
diagonal_attention_scores[:, 0, 1:window_overlap, 1:window_overlap] = diagonal_chunked_attention_scores[ | |
:, 0, : window_overlap - 1, 1 - window_overlap : | |
] | |
# separate batch_size and num_heads dimensions again | |
diagonal_attention_scores = diagonal_attention_scores.view( | |
batch_size, num_heads, seq_len, 2 * window_overlap + 1 | |
).transpose(2, 1) | |
self._mask_invalid_locations(diagonal_attention_scores, window_overlap) | |
return diagonal_attention_scores | |
def _sliding_chunks_matmul_attn_probs_value( | |
self, attn_probs: torch.Tensor, value: torch.Tensor, window_overlap: int | |
): | |
""" | |
Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the | |
same shape as `attn_probs` | |
""" | |
batch_size, seq_len, num_heads, head_dim = value.size() | |
assert seq_len % (window_overlap * 2) == 0 | |
assert attn_probs.size()[:3] == value.size()[:3] | |
assert attn_probs.size(3) == 2 * window_overlap + 1 | |
chunks_count = seq_len // window_overlap - 1 | |
# group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap | |
chunked_attn_probs = attn_probs.transpose(1, 2).reshape( | |
batch_size * num_heads, seq_len // window_overlap, window_overlap, 2 * window_overlap + 1 | |
) | |
# group batch_size and num_heads dimensions into one | |
value = value.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) | |
# pad seq_len with w at the beginning of the sequence and another window overlap at the end | |
padded_value = nn.functional.pad(value, (0, 0, window_overlap, window_overlap), value=-1) | |
# chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap | |
chunked_value_size = (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim) | |
chunked_value_stride = padded_value.stride() | |
chunked_value_stride = ( | |
chunked_value_stride[0], | |
window_overlap * chunked_value_stride[1], | |
chunked_value_stride[1], | |
chunked_value_stride[2], | |
) | |
chunked_value = padded_value.as_strided(size=chunked_value_size, stride=chunked_value_stride) | |
chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs) | |
context = torch.einsum("bcwd,bcdh->bcwh", (chunked_attn_probs, chunked_value)) | |
return context.view(batch_size, num_heads, seq_len, head_dim).transpose(1, 2) | |
def _get_global_attn_indices(is_index_global_attn): | |
"""compute global attn indices required throughout forward pass""" | |
# helper variable | |
num_global_attn_indices = is_index_global_attn.long().sum(dim=1) | |
# max number of global attn indices in batch | |
max_num_global_attn_indices = num_global_attn_indices.max() | |
# indices of global attn | |
is_index_global_attn_nonzero = is_index_global_attn.nonzero(as_tuple=True) | |
# helper variable | |
is_local_index_global_attn = torch.arange( | |
max_num_global_attn_indices, device=is_index_global_attn.device | |
) < num_global_attn_indices.unsqueeze(dim=-1) | |
# location of the non-padding values within global attention indices | |
is_local_index_global_attn_nonzero = is_local_index_global_attn.nonzero(as_tuple=True) | |
# location of the padding values within global attention indices | |
is_local_index_no_global_attn_nonzero = (is_local_index_global_attn == 0).nonzero(as_tuple=True) | |
return ( | |
max_num_global_attn_indices, | |
is_index_global_attn_nonzero, | |
is_local_index_global_attn_nonzero, | |
is_local_index_no_global_attn_nonzero, | |
) | |
def _concat_with_global_key_attn_probs( | |
self, | |
key_vectors, | |
query_vectors, | |
max_num_global_attn_indices, | |
is_index_global_attn_nonzero, | |
is_local_index_global_attn_nonzero, | |
is_local_index_no_global_attn_nonzero, | |
): | |
batch_size = key_vectors.shape[0] | |
# create only global key vectors | |
key_vectors_only_global = key_vectors.new_zeros( | |
batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim | |
) | |
key_vectors_only_global[is_local_index_global_attn_nonzero] = key_vectors[is_index_global_attn_nonzero] | |
# (batch_size, seq_len, num_heads, max_num_global_attn_indices) | |
attn_probs_from_global_key = torch.einsum("blhd,bshd->blhs", (query_vectors, key_vectors_only_global)) | |
attn_probs_from_global_key[ | |
is_local_index_no_global_attn_nonzero[0], :, :, is_local_index_no_global_attn_nonzero[1] | |
] = -10000.0 | |
return attn_probs_from_global_key | |
def _compute_attn_output_with_global_indices( | |
self, | |
value_vectors, | |
attn_probs, | |
max_num_global_attn_indices, | |
is_index_global_attn_nonzero, | |
is_local_index_global_attn_nonzero, | |
): | |
batch_size = attn_probs.shape[0] | |
# cut local attn probs to global only | |
attn_probs_only_global = attn_probs.narrow(-1, 0, max_num_global_attn_indices) | |
# get value vectors for global only | |
value_vectors_only_global = value_vectors.new_zeros( | |
batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim | |
) | |
value_vectors_only_global[is_local_index_global_attn_nonzero] = value_vectors[is_index_global_attn_nonzero] | |
# use `matmul` because `einsum` crashes sometimes with fp16 | |
# attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v)) | |
# compute attn output only global | |
attn_output_only_global = torch.matmul( | |
attn_probs_only_global.transpose(1, 2), value_vectors_only_global.transpose(1, 2) | |
).transpose(1, 2) | |
# reshape attn probs | |
attn_probs_without_global = attn_probs.narrow( | |
-1, max_num_global_attn_indices, attn_probs.size(-1) - max_num_global_attn_indices | |
).contiguous() | |
# compute attn output with global | |
attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value( | |
attn_probs_without_global, value_vectors, self.one_sided_attn_window_size | |
) | |
return attn_output_only_global + attn_output_without_global | |
def _compute_global_attn_output_from_hidden( | |
self, | |
hidden_states, | |
max_num_global_attn_indices, | |
layer_head_mask, | |
is_local_index_global_attn_nonzero, | |
is_index_global_attn_nonzero, | |
is_local_index_no_global_attn_nonzero, | |
is_index_masked, | |
): | |
seq_len, batch_size = hidden_states.shape[:2] | |
# prepare global hidden states | |
global_attn_hidden_states = hidden_states.new_zeros(max_num_global_attn_indices, batch_size, self.embed_dim) | |
global_attn_hidden_states[is_local_index_global_attn_nonzero[::-1]] = hidden_states[ | |
is_index_global_attn_nonzero[::-1] | |
] | |
# global key, query, value | |
global_query_vectors_only_global = self.query_global(global_attn_hidden_states) | |
global_key_vectors = self.key_global(hidden_states) | |
global_value_vectors = self.value_global(hidden_states) | |
# normalize | |
global_query_vectors_only_global /= math.sqrt(self.head_dim) | |
# reshape | |
global_query_vectors_only_global = ( | |
global_query_vectors_only_global.contiguous() | |
.view(max_num_global_attn_indices, batch_size * self.num_heads, self.head_dim) | |
.transpose(0, 1) | |
) # (batch_size * self.num_heads, max_num_global_attn_indices, head_dim) | |
global_key_vectors = ( | |
global_key_vectors.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1) | |
) # batch_size * self.num_heads, seq_len, head_dim) | |
global_value_vectors = ( | |
global_value_vectors.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1) | |
) # batch_size * self.num_heads, seq_len, head_dim) | |
# compute attn scores | |
global_attn_scores = torch.bmm(global_query_vectors_only_global, global_key_vectors.transpose(1, 2)) | |
assert list(global_attn_scores.size()) == [ | |
batch_size * self.num_heads, | |
max_num_global_attn_indices, | |
seq_len, | |
], f"global_attn_scores have the wrong size. Size should be {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is {global_attn_scores.size()}." | |
global_attn_scores = global_attn_scores.view(batch_size, self.num_heads, max_num_global_attn_indices, seq_len) | |
global_attn_scores[ | |
is_local_index_no_global_attn_nonzero[0], :, is_local_index_no_global_attn_nonzero[1], : | |
] = -10000.0 | |
global_attn_scores = global_attn_scores.masked_fill( | |
is_index_masked[:, None, None, :], | |
-10000.0, | |
) | |
global_attn_scores = global_attn_scores.view(batch_size * self.num_heads, max_num_global_attn_indices, seq_len) | |
# compute global attn probs | |
global_attn_probs_float = nn.functional.softmax( | |
global_attn_scores, dim=-1, dtype=torch.float32 | |
) # use fp32 for numerical stability | |
# apply layer head masking | |
if layer_head_mask is not None: | |
assert layer_head_mask.size() == ( | |
self.num_heads, | |
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" | |
global_attn_probs_float = layer_head_mask.view(1, -1, 1, 1) * global_attn_probs_float.view( | |
batch_size, self.num_heads, max_num_global_attn_indices, seq_len | |
) | |
global_attn_probs_float = global_attn_probs_float.view( | |
batch_size * self.num_heads, max_num_global_attn_indices, seq_len | |
) | |
global_attn_probs = nn.functional.dropout( | |
global_attn_probs_float.type_as(global_attn_scores), p=self.dropout, training=self.training | |
) | |
# global attn output | |
global_attn_output = torch.bmm(global_attn_probs, global_value_vectors) | |
assert list(global_attn_output.size()) == [ | |
batch_size * self.num_heads, | |
max_num_global_attn_indices, | |
self.head_dim, | |
], f"global_attn_output tensor has the wrong size. Size should be {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is {global_attn_output.size()}." | |
global_attn_probs = global_attn_probs.view(batch_size, self.num_heads, max_num_global_attn_indices, seq_len) | |
global_attn_output = global_attn_output.view( | |
batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim | |
) | |
return global_attn_output, global_attn_probs | |
class LEDEncoderAttention(nn.Module): | |
def __init__(self, config, layer_id): | |
super().__init__() | |
self.longformer_self_attn = LEDEncoderSelfAttention(config, layer_id=layer_id) | |
self.output = nn.Linear(config.d_model, config.d_model) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
is_index_masked: Optional[torch.Tensor] = None, | |
is_index_global_attn: Optional[torch.Tensor] = None, | |
is_global_attn: Optional[bool] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
self_outputs = self.longformer_self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
is_index_masked=is_index_masked, | |
is_index_global_attn=is_index_global_attn, | |
is_global_attn=is_global_attn, | |
output_attentions=output_attentions, | |
) | |
attn_output = self.output(self_outputs[0]) | |
outputs = (attn_output,) + self_outputs[1:] | |
return outputs | |
class LEDDecoderAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int, | |
dropout: float = 0.0, | |
is_decoder: bool = False, | |
bias: bool = True, | |
): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
assert ( | |
self.head_dim * num_heads == self.embed_dim | |
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {num_heads})." | |
self.scaling = self.head_dim ** -0.5 | |
self.is_decoder = is_decoder | |
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, embed_dim = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scaling | |
# get key, value proj | |
if is_cross_attention and past_key_value is not None: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0] | |
value_states = past_key_value[1] | |
elif is_cross_attention: | |
# cross_attentions | |
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
elif past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
else: | |
# self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.view(*proj_shape) | |
value_states = value_states.view(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
assert attn_weights.size() == ( | |
bsz * self.num_heads, | |
tgt_len, | |
src_len, | |
), f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}" | |
if attention_mask is not None: | |
assert attention_mask.size() == ( | |
bsz, | |
1, | |
tgt_len, | |
src_len, | |
), f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if layer_head_mask is not None: | |
assert layer_head_mask.size() == ( | |
self.num_heads, | |
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" | |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if output_attentions: | |
# this operation is a bit awkward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to be reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.bmm(attn_probs, value_states) | |
assert attn_output.size() == ( | |
bsz * self.num_heads, | |
tgt_len, | |
self.head_dim, | |
), f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}" | |
attn_output = ( | |
attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
.transpose(1, 2) | |
.reshape(bsz, tgt_len, embed_dim) | |
) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights_reshaped, past_key_value | |
class LEDEncoderLayer(nn.Module): | |
def __init__(self, config: LEDConfig, layer_id: int): | |
super().__init__() | |
self.embed_dim = config.d_model | |
self.self_attn = LEDEncoderAttention(config, layer_id) | |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.dropout = config.dropout | |
self.activation_fn = ACT2FN[config.activation_function] | |
self.activation_dropout = config.activation_dropout | |
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) | |
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) | |
self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
layer_head_mask: torch.Tensor, | |
is_index_masked=None, | |
is_index_global_attn=None, | |
is_global_attn=None, | |
output_attentions=False, | |
): | |
""" | |
Args: | |
hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)` | |
attention_mask (:obj:`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size | |
`(encoder_attention_heads,)`. | |
""" | |
residual = hidden_states | |
attn_outputs = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
is_index_masked=is_index_masked, | |
is_index_global_attn=is_index_global_attn, | |
is_global_attn=is_global_attn, | |
output_attentions=output_attentions, | |
) | |
hidden_states = attn_outputs[0] | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
residual = hidden_states | |
hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
hidden_states = self.fc2(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
hidden_states = self.final_layer_norm(hidden_states) | |
if hidden_states.dtype == torch.float16 and ( | |
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() | |
): | |
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
return (hidden_states,) + attn_outputs[1:] | |
class LEDDecoderLayer(nn.Module): | |
def __init__(self, config: LEDConfig): | |
super().__init__() | |
self.embed_dim = config.d_model | |
self.self_attn = LEDDecoderAttention( | |
embed_dim=self.embed_dim, | |
num_heads=config.decoder_attention_heads, | |
dropout=config.attention_dropout, | |
is_decoder=True, | |
) | |
self.dropout = config.dropout | |
self.activation_fn = ACT2FN[config.activation_function] | |
self.activation_dropout = config.activation_dropout | |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.encoder_attn = LEDDecoderAttention( | |
self.embed_dim, | |
config.decoder_attention_heads, | |
dropout=config.attention_dropout, | |
is_decoder=True, | |
) | |
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) | |
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) | |
self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
cross_attn_layer_head_mask: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = True, | |
): | |
""" | |
Args: | |
hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)` | |
attention_mask (:obj:`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
encoder_hidden_states (:obj:`torch.FloatTensor`): cross attention input to the layer of shape `(seq_len, batch, embed_dim)` | |
encoder_attention_mask (:obj:`torch.FloatTensor`): encoder attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size | |
`(decoder_attention_heads,)`. | |
cross_attn_layer_head_mask (:obj:`torch.FloatTensor`): mask for encoder attention heads in a given layer of | |
size `(decoder_attention_heads,)`. | |
past_key_value (:obj:`Tuple(torch.FloatTensor)`): cached past key and value projection states | |
output_attentions (:obj:`bool`): Whether the base model outputs attentions. | |
This requires the attentions tensor to be reshaped in this function. | |
""" | |
residual = hidden_states | |
# Self Attention | |
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2 | |
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None | |
# add present self-attn cache to positions 1,2 of present_key_value tuple | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
past_key_value=self_attn_past_key_value, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
# Cross-Attention Block | |
cross_attn_present_key_value = None | |
cross_attn_weights = None | |
if encoder_hidden_states is not None: | |
residual = hidden_states | |
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple | |
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None | |
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( | |
hidden_states=hidden_states, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=cross_attn_past_key_value, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
hidden_states = self.encoder_attn_layer_norm(hidden_states) | |
# add cross-attn to positions 3,4 of present_key_value tuple | |
present_key_value = present_key_value + cross_attn_present_key_value | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
hidden_states = self.fc2(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
hidden_states = self.final_layer_norm(hidden_states) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights, cross_attn_weights) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
class LEDClassificationHead(nn.Module): | |
"""Head for sentence-level classification tasks.""" | |
def __init__( | |
self, | |
input_dim: int, | |
inner_dim: int, | |
num_classes: int, | |
pooler_dropout: float, | |
): | |
super().__init__() | |
self.dense = nn.Linear(input_dim, inner_dim) | |
self.dropout = nn.Dropout(p=pooler_dropout) | |
self.out_proj = nn.Linear(inner_dim, num_classes) | |
def forward(self, hidden_states: torch.Tensor): | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.dense(hidden_states) | |
hidden_states = torch.tanh(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.out_proj(hidden_states) | |
return hidden_states | |
class LEDPreTrainedModel(PreTrainedModel): | |
config_class = LEDConfig | |
base_model_prefix = "led" | |
def _init_weights(self, module): | |
std = self.config.init_std | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
def dummy_inputs(self): | |
pad_token = self.config.pad_token_id | |
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) | |
dummy_inputs = { | |
"attention_mask": input_ids.ne(pad_token), | |
"input_ids": input_ids, | |
} | |
return dummy_inputs | |
# Copied from transformers.models.longformer.modeling_longformer.LongformerBaseModelOutput with Longformer->LEDEncoder | |
class LEDEncoderBaseModelOutput(ModelOutput): | |
""" | |
Base class for LEDEncoder's outputs, with potential hidden states, local and global attentions. | |
Args: | |
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention | |
mask. | |
Local attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token in the sequence to every token with | |
global attention (first ``x`` values) and to every token in the attention window (remaining | |
``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in | |
the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the | |
attention weight of a token to itself is located at index ``x + attention_window / 2`` and the | |
``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window | |
/ 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the | |
attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` | |
attention weights. If a token has global attention, the attention weights to all other tokens in | |
:obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. | |
global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. | |
Global attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token with global attention to every token | |
in the sequence. | |
""" | |
last_hidden_state: torch.FloatTensor | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
global_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class LEDSeq2SeqModelOutput(ModelOutput): | |
""" | |
Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential | |
decoding. | |
Args: | |
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the decoder of the model. | |
If :obj:`past_key_values` is used only the last hidden-state of the sequences of shape :obj:`(batch_size, | |
1, hidden_size)` is output. | |
past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): | |
List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, | |
batch_size, num_heads, sequence_length, embed_size_per_head)`). | |
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be | |
used (see :obj:`past_key_values` input) to speed up sequential decoding. | |
decoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. | |
decoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. | |
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. | |
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the | |
weighted average in the cross-attention heads. | |
encoder_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
Sequence of hidden-states at the output of the last layer of the encoder of the model. | |
encoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. | |
encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. | |
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
encoder_global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. | |
Global attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token with global attention to every token | |
in the sequence. | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
past_key_values: Optional[List[torch.FloatTensor]] = None | |
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
encoder_last_hidden_state: Optional[torch.FloatTensor] = None | |
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
encoder_global_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class LEDSeq2SeqLMOutput(ModelOutput): | |
""" | |
Base class for sequence-to-sequence language models outputs. | |
Args: | |
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): | |
Language modeling loss. | |
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): | |
List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, | |
batch_size, num_heads, sequence_length, embed_size_per_head)`). | |
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be | |
used (see :obj:`past_key_values` input) to speed up sequential decoding. | |
decoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. | |
decoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. | |
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. | |
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the | |
weighted average in the cross-attention heads. | |
encoder_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
Sequence of hidden-states at the output of the last layer of the encoder of the model. | |
encoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. | |
encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. | |
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
encoder_global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. | |
Global attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token with global attention to every token | |
in the sequence. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
past_key_values: Optional[List[torch.FloatTensor]] = None | |
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
encoder_last_hidden_state: Optional[torch.FloatTensor] = None | |
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
encoder_global_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class LEDSeq2SeqSequenceClassifierOutput(ModelOutput): | |
""" | |
Base class for outputs of sequence-to-sequence sentence classification models. | |
Args: | |
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided): | |
Classification (or regression if config.num_labels==1) loss. | |
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): | |
Classification (or regression if config.num_labels==1) scores (before SoftMax). | |
past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): | |
List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, | |
batch_size, num_heads, sequence_length, embed_size_per_head)`). | |
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be | |
used (see :obj:`past_key_values` input) to speed up sequential decoding. | |
decoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. | |
decoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. | |
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. | |
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the | |
weighted average in the cross-attention heads. | |
encoder_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
Sequence of hidden-states at the output of the last layer of the encoder of the model. | |
encoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. | |
encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. | |
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
encoder_global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. | |
Global attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token with global attention to every token | |
in the sequence. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
past_key_values: Optional[List[torch.FloatTensor]] = None | |
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
encoder_last_hidden_state: Optional[torch.FloatTensor] = None | |
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
encoder_global_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class LEDSeq2SeqQuestionAnsweringModelOutput(ModelOutput): | |
""" | |
Base class for outputs of sequence-to-sequence question answering models. | |
Args: | |
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): | |
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. | |
start_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`): | |
Span-start scores (before SoftMax). | |
end_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`): | |
Span-end scores (before SoftMax). | |
past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): | |
List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, | |
batch_size, num_heads, sequence_length, embed_size_per_head)`). | |
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be | |
used (see :obj:`past_key_values` input) to speed up sequential decoding. | |
decoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. | |
decoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. | |
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
cross_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. | |
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the | |
weighted average in the cross-attention heads. | |
encoder_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
Sequence of hidden-states at the output of the last layer of the encoder of the model. | |
encoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. | |
encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. | |
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
encoder_global_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. | |
Global attentions weights after the attention softmax, used to compute the weighted average in the | |
self-attention heads. Those are the attention weights from every token with global attention to every token | |
in the sequence. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
start_logits: torch.FloatTensor = None | |
end_logits: torch.FloatTensor = None | |
past_key_values: Optional[List[torch.FloatTensor]] = None | |
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
encoder_last_hidden_state: Optional[torch.FloatTensor] = None | |
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
encoder_global_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
LED_START_DOCSTRING = r""" | |
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic | |
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, | |
pruning heads etc.) | |
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ | |
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to | |
general usage and behavior. | |
Parameters: | |
config (:class:`~transformers.LEDConfig`): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
:meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. | |
""" | |
LED_GENERATION_EXAMPLE = r""" | |
Summarization example:: | |
>>> import torch | |
>>> from transformers import LEDTokenizer, LEDForConditionalGeneration | |
>>> model = LEDForConditionalGeneration.from_pretrained('allenai/led-large-16384-arxiv') | |
>>> tokenizer = LEDTokenizer.from_pretrained('allenai/led-large-16384-arxiv') | |
>>> ARTICLE_TO_SUMMARIZE = '''Transformers (Vaswani et al., 2017) have achieved state-of-the-art | |
... results in a wide range of natural language tasks including generative | |
... language modeling (Dai et al., 2019; Radford et al., 2019) and discriminative | |
... language understanding (Devlin et al., 2019). This success is partly due to | |
... the self-attention component which enables the network to capture contextual | |
... information from the entire sequence. While powerful, the memory and computational | |
... requirements of self-attention grow quadratically with sequence length, making | |
... it infeasible (or very expensive) to process long sequences. | |
... | |
... To address this limitation, we present Longformer, a modified Transformer | |
... architecture with a self-attention operation that scales linearly with the | |
... sequence length, making it versatile for processing long documents (Fig 1). This | |
... is an advantage for natural language tasks such as long document classification, | |
... question answering (QA), and coreference resolution, where existing approaches | |
... partition or shorten the long context into smaller sequences that fall within the | |
... typical 512 token limit of BERT-style pretrained models. Such partitioning could | |
... potentially result in loss of important cross-partition information, and to | |
... mitigate this problem, existing methods often rely on complex architectures to | |
... address such interactions. On the other hand, our proposed Longformer is able to | |
... build contextual representations of the entire context using multiple layers of | |
... attention, reducing the need for task-specific architectures.''' | |
>>> inputs = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt') | |
>>> # Global attention on the first token (cf. Beltagy et al. 2020) | |
>>> global_attention_mask = torch.zeros_like(inputs) | |
>>> global_attention_mask[:, 0] = 1 | |
>>> # Generate Summary | |
>>> summary_ids = model.generate(inputs, global_attention_mask=global_attention_mask, | |
... num_beams=3, max_length=32, early_stopping=True) | |
>>> print(tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)) | |
""" | |
LED_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using :class:`~transformers.LEDTokenizer`. See | |
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): | |
Indices of decoder input sequence tokens in the vocabulary. | |
Indices can be obtained using :class:`~transformers.LedTokenizer`. See | |
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
LED uses the :obj:`eos_token_id` as the starting token for :obj:`decoder_input_ids` generation. If | |
:obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see | |
:obj:`past_key_values`). | |
decoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): | |
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will | |
also be used by default. | |
If you want to change padding behavior, you should read :func:`modeling_led._prepare_decoder_inputs` and | |
modify to your needs. See diagram 1 in `the paper <https://arxiv.org/abs/1910.13461>`__ for more | |
information on the default strategy. | |
global_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Mask to decide the attention given on each token, local attention or global attention for the encoder. | |
Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is | |
important for task-specific finetuning because it makes the model more flexible at representing the task. | |
For example, for classification, the <s> token should be given global attention. For QA, all question | |
tokens should also have global attention. Please refer to the `Longformer paper | |
<https://arxiv.org/abs/2004.05150>`__ for more details. Mask values selected in ``[0, 1]``: | |
- 0 for local attention (a sliding window attention), | |
- 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them). | |
head_mask (:obj:`torch.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`): | |
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
decoder_head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): | |
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): | |
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in ``[0, | |
1]``: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`): | |
Tuple consists of (:obj:`last_hidden_state`, `optional`: :obj:`hidden_states`, `optional`: | |
:obj:`attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)`, | |
`optional`) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the | |
cross-attention of the decoder. | |
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): | |
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 tensors | |
of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of | |
shape :obj:`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see :obj:`past_key_values` input) to speed up sequential decoding. | |
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` | |
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` | |
instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size, sequence_length)`. | |
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
vectors than the model's internal embedding lookup matrix. | |
decoder_inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, target_sequence_length, hidden_size)`, `optional`): | |
Optionally, instead of passing :obj:`decoder_input_ids` you can choose to directly pass an embedded | |
representation. If :obj:`past_key_values` is used, optionally only the last :obj:`decoder_inputs_embeds` | |
have to be input (see :obj:`past_key_values`). This is useful if you want more control over how to convert | |
:obj:`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. | |
If :obj:`decoder_input_ids` and :obj:`decoder_inputs_embeds` are both unset, :obj:`decoder_inputs_embeds` | |
takes the value of :obj:`inputs_embeds`. | |
use_cache (:obj:`bool`, `optional`): | |
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up | |
decoding (see :obj:`past_key_values`). | |
output_attentions (:obj:`bool`, `optional`): | |
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
tensors for more detail. | |
output_hidden_states (:obj:`bool`, `optional`): | |
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
more detail. | |
return_dict (:obj:`bool`, `optional`): | |
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
""" | |
class LEDEncoder(LEDPreTrainedModel): | |
""" | |
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a | |
:class:`LEDEncoderLayer`. | |
Args: | |
config: LEDConfig | |
embed_tokens (nn.Embedding): output embedding | |
""" | |
def __init__(self, config: LEDConfig, embed_tokens: Optional[nn.Embedding] = None): | |
super().__init__(config) | |
self.dropout = config.dropout | |
self.layerdrop = config.encoder_layerdrop | |
embed_dim = config.d_model | |
self.padding_idx = config.pad_token_id | |
self.max_source_positions = config.max_encoder_position_embeddings | |
if isinstance(config.attention_window, int): | |
assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value" | |
assert config.attention_window > 0, "`config.attention_window` has to be positive" | |
config.attention_window = [config.attention_window] * config.num_hidden_layers # one value per layer | |
else: | |
assert len(config.attention_window) == config.num_hidden_layers, ( | |
"`len(config.attention_window)` should equal `config.num_hidden_layers`. " | |
f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}" | |
) | |
if embed_tokens is not None: | |
self.embed_tokens = embed_tokens | |
else: | |
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) | |
self.embed_positions = LEDLearnedPositionalEmbedding( | |
self.max_source_positions, | |
embed_dim, | |
) | |
self.layers = nn.ModuleList([LEDEncoderLayer(config, i) for i in range(config.encoder_layers)]) | |
self.layernorm_embedding = nn.LayerNorm(embed_dim) | |
self.init_weights() | |
def _merge_to_attention_mask(self, attention_mask: torch.Tensor, global_attention_mask: torch.Tensor): | |
# longformer self attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn) | |
# (global_attention_mask + 1) => 1 for local attention, 2 for global attention | |
# => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention | |
if attention_mask is not None: | |
attention_mask = attention_mask * (global_attention_mask + 1) | |
else: | |
# simply use `global_attention_mask` as `attention_mask` | |
# if no `attention_mask` is given | |
attention_mask = global_attention_mask + 1 | |
return attention_mask | |
def _pad_to_window_size( | |
self, | |
input_ids: torch.Tensor, | |
attention_mask: torch.Tensor, | |
inputs_embeds: torch.Tensor, | |
pad_token_id: int, | |
): | |
"""A helper function to pad tokens and mask to work with implementation of Longformer self-attention.""" | |
# padding | |
attention_window = ( | |
self.config.attention_window | |
if isinstance(self.config.attention_window, int) | |
else max(self.config.attention_window) | |
) | |
assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}" | |
input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape | |
batch_size, seq_len = input_shape[:2] | |
padding_len = (attention_window - seq_len % attention_window) % attention_window | |
if padding_len > 0: | |
logger.info( | |
f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of " | |
f"`config.attention_window`: {attention_window}" | |
) | |
if input_ids is not None: | |
input_ids = nn.functional.pad(input_ids, (0, padding_len), value=pad_token_id) | |
if inputs_embeds is not None: | |
input_ids_padding = inputs_embeds.new_full( | |
(batch_size, padding_len), | |
self.config.pad_token_id, | |
dtype=torch.long, | |
) | |
inputs_embeds_padding = self.embed_tokens(input_ids_padding) | |
inputs_embeds = torch.cat([inputs_embeds, inputs_embeds_padding], dim=-2) | |
attention_mask = nn.functional.pad( | |
attention_mask, (0, padding_len), value=False | |
) # no attention on the padding tokens | |
return padding_len, input_ids, attention_mask, inputs_embeds | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
global_attention_mask=None, | |
head_mask=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
Args: | |
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
provide it. | |
Indices can be obtained using :class:`~transformers.LEDTokenizer`. See | |
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` | |
for details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
global_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Mask to decide the attention given on each token, local attention or global attention for the encoder. | |
Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is | |
important for task-specific finetuning because it makes the model more flexible at representing the | |
task. For example, for classification, the <s> token should be given global attention. For QA, all | |
question tokens should also have global attention. Please refer to the `Longformer paper | |
<https://arxiv.org/abs/2004.05150>`__ for more details. Mask values selected in ``[0, 1]``: | |
- 0 for local attention (a sliding window attention), | |
- 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them). | |
head_mask (:obj:`torch.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`): | |
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded | |
representation. This is useful if you want more control over how to convert :obj:`input_ids` indices | |
into associated vectors than the model's internal embedding lookup matrix. | |
output_attentions (:obj:`bool`, `optional`): | |
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under | |
returned tensors for more detail. | |
output_hidden_states (:obj:`bool`, `optional`): | |
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors | |
for more detail. | |
return_dict (:obj:`bool`, `optional`): | |
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# check input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is None and inputs_embeds is None: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
# create default attention_mask | |
if attention_mask is None: | |
attention_mask = torch.ones(inputs_embeds.size()[:-1], device=inputs_embeds.device, dtype=torch.long) | |
# merge `global_attention_mask` and `attention_mask` | |
if global_attention_mask is not None: | |
attention_mask = self._merge_to_attention_mask(attention_mask, global_attention_mask) | |
# pad input if necessary | |
padding_len, input_ids, attention_mask, inputs_embeds = self._pad_to_window_size( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
pad_token_id=self.config.pad_token_id, | |
) | |
# retrieve input_shape | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
# convert attention_mask to float | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, seq_len]; 1 -> 0.0; 0 -> "-inf" | |
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)[:, 0, 0, :] | |
# get masking tensors | |
is_index_masked = attention_mask < 0 | |
is_index_global_attn = attention_mask > 0 | |
is_global_attn = is_index_global_attn.flatten().any().item() | |
embed_pos = self.embed_positions(input_shape) | |
hidden_states = inputs_embeds + embed_pos | |
hidden_states = self.layernorm_embedding(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
all_global_attentions = () if (output_attentions and is_global_attn) else None | |
# check if head_mask has a correct number of layers specified if desired | |
if head_mask is not None: | |
assert head_mask.size()[0] == ( | |
len(self.layers) | |
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
dropout_probability = random.uniform(0, 1) | |
if self.training and (dropout_probability < self.layerdrop): # skip the layer | |
layer_outputs = (None, None, None) | |
else: | |
if getattr(self.config, "gradient_checkpointing", False) and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, is_global_attn, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(encoder_layer), | |
hidden_states, | |
attention_mask, | |
head_mask[idx] if head_mask is not None else None, | |
is_index_masked, | |
is_index_global_attn, | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
is_index_masked=is_index_masked, | |
is_index_global_attn=is_index_global_attn, | |
is_global_attn=is_global_attn, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
# bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1) | |
all_attentions = all_attentions + (layer_outputs[1].transpose(1, 2),) | |
if is_global_attn: | |
# bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn | |
all_global_attentions = all_global_attentions + (layer_outputs[2].transpose(2, 3),) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
# undo padding | |
if padding_len > 0: | |
# unpad `hidden_states` because the calling function is expecting a length == input_ids.size(1) | |
hidden_states = hidden_states[:, :-padding_len] | |
if not return_dict: | |
return tuple( | |
v for v in [hidden_states, encoder_states, all_attentions, all_global_attentions] if v is not None | |
) | |
return LEDEncoderBaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=encoder_states, | |
attentions=all_attentions, | |
global_attentions=all_global_attentions, | |
) | |
class LEDDecoder(LEDPreTrainedModel): | |
""" | |
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`LEDDecoderLayer` | |
Args: | |
config: LEDConfig | |
embed_tokens (nn.Embedding): output embedding | |
""" | |
def __init__(self, config: LEDConfig, embed_tokens: Optional[nn.Embedding] = None): | |
super().__init__(config) | |
self.dropout = config.dropout | |
self.layerdrop = config.decoder_layerdrop | |
self.padding_idx = config.pad_token_id | |
self.max_target_positions = config.max_decoder_position_embeddings | |
if embed_tokens is not None: | |
self.embed_tokens = embed_tokens | |
else: | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) | |
self.embed_positions = LEDLearnedPositionalEmbedding( | |
self.max_target_positions, | |
config.d_model, | |
) | |
self.layers = nn.ModuleList([LEDDecoderLayer(config) for _ in range(config.decoder_layers)]) | |
self.layernorm_embedding = nn.LayerNorm(config.d_model) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
global_attention_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
head_mask=None, | |
cross_attn_head_mask=None, | |
past_key_values=None, | |
inputs_embeds=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
Args: | |
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
provide it. | |
Indices can be obtained using :class:`~transformers.LEDTokenizer`. See | |
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` | |
for details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
global_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Mask to decide the attention given on each token, local attention or global attention. Tokens with | |
global attention attends to all other tokens, and all other tokens attend to them. This is important | |
for task-specific finetuning because it makes the model more flexible at representing the task. For | |
example, for classification, the <s> token should be given global attention. For QA, all question | |
tokens should also have global attention. Please refer to the `Longformer paper | |
<https://arxiv.org/abs/2004.05150>`__ for more details. Mask values selected in ``[0, 1]``: | |
- 0 for local attention (a sliding window attention), | |
- 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them). | |
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, encoder_sequence_length, hidden_size)`, `optional`): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention | |
of the decoder. | |
encoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, encoder_sequence_length)`, `optional`): | |
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values | |
selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): | |
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): | |
Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): | |
Tuple of :obj:`tuple(torch.FloatTensor)` of length :obj:`config.n_layers`, with each tuple having 2 | |
tensors of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional | |
tensors of shape :obj:`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the | |
cross-attention blocks) that can be used (see :obj:`past_key_values` input) to speed up sequential | |
decoding. | |
If :obj:`past_key_values` are used, the user can optionally input only the last | |
:obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of | |
shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size, | |
sequence_length)`. | |
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded | |
representation. This is useful if you want more control over how to convert :obj:`input_ids` indices | |
into associated vectors than the model's internal embedding lookup matrix. | |
output_attentions (:obj:`bool`, `optional`): | |
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under | |
returned tensors for more detail. | |
output_hidden_states (:obj:`bool`, `optional`): | |
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors | |
for more detail. | |
return_dict (:obj:`bool`, `optional`): | |
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | |
# past_key_values_length | |
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
# create causal mask | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
combined_attention_mask = None | |
if input_shape[-1] > 1: | |
combined_attention_mask = _make_causal_mask( | |
input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length | |
).to(self.device) | |
if attention_mask is not None and combined_attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
combined_attention_mask = combined_attention_mask + _expand_mask( | |
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] | |
) | |
# expand encoder attention mask | |
if encoder_hidden_states is not None and encoder_attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) | |
# embed positions | |
positions = self.embed_positions(input_shape, past_key_values_length) | |
hidden_states = inputs_embeds + positions | |
hidden_states = self.layernorm_embedding(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
all_cross_attentions = () if output_attentions else None | |
next_decoder_cache = () if use_cache else None | |
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired | |
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): | |
if attn_mask is not None: | |
assert attn_mask.size()[0] == ( | |
len(self.layers) | |
), f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." | |
for idx, decoder_layer in enumerate(self.layers): | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
dropout_probability = random.uniform(0, 1) | |
if self.training and (dropout_probability < self.layerdrop): | |
continue | |
past_key_value = past_key_values[idx] if past_key_values is not None else None | |
if getattr(self.config, "gradient_checkpointing", False) and self.training: | |
if use_cache: | |
logger.warning( | |
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " | |
"`use_cache=False`..." | |
) | |
use_cache = False | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
# None for past_key_value | |
return module(*inputs, output_attentions, use_cache) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(decoder_layer), | |
hidden_states, | |
combined_attention_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
head_mask[idx] if head_mask is not None else None, | |
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, | |
None, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=combined_attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
cross_attn_layer_head_mask=( | |
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None | |
), | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
all_cross_attentions += (layer_outputs[2],) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = next_decoder_cache if use_cache else None | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
cross_attentions=all_cross_attentions, | |
) | |
class LEDModel(LEDPreTrainedModel): | |
def __init__(self, config: LEDConfig): | |
super().__init__(config) | |
padding_idx, vocab_size = config.pad_token_id, config.vocab_size | |
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) | |
self.encoder = LEDEncoder(config, self.shared) | |
self.decoder = LEDDecoder(config, self.shared) | |
self.init_weights() | |
def get_input_embeddings(self): | |
return self.shared | |
def set_input_embeddings(self, value): | |
self.shared = value | |
self.encoder.embed_tokens = self.shared | |
self.decoder.embed_tokens = self.shared | |
def get_encoder(self): | |
return self.encoder | |
def get_decoder(self): | |
return self.decoder | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
decoder_input_ids=None, | |
decoder_attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
encoder_outputs=None, | |
global_attention_mask=None, | |
past_key_values=None, | |
inputs_embeds=None, | |
decoder_inputs_embeds=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if encoder_outputs is None: | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
global_attention_mask=global_attention_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
# If the user passed a tuple for encoder_outputs, we wrap it in a LEDEncoderBaseModelOutput when return_dict=False | |
elif return_dict and not isinstance(encoder_outputs, LEDEncoderBaseModelOutput): | |
encoder_outputs = LEDEncoderBaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
global_attentions=encoder_outputs[3] if len(encoder_outputs) > 3 else None, | |
) | |
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
encoder_hidden_states=encoder_outputs[0], | |
encoder_attention_mask=attention_mask, | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=decoder_inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
return decoder_outputs + encoder_outputs | |
return LEDSeq2SeqModelOutput( | |
last_hidden_state=decoder_outputs.last_hidden_state, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
encoder_global_attentions=encoder_outputs.global_attentions, | |
) | |
class LEDForConditionalGeneration(LEDPreTrainedModel): | |
base_model_prefix = "led" | |
_keys_to_ignore_on_load_missing = [ | |
r"final_logits_bias", | |
r"encoder\.version", | |
r"decoder\.version", | |
r"lm_head\.weight", | |
] | |
def __init__(self, config: LEDConfig): | |
super().__init__(config) | |
self.led = LEDModel(config) | |
self.register_buffer("final_logits_bias", torch.zeros((1, self.led.shared.num_embeddings))) | |
self.lm_head = nn.Linear(config.d_model, self.led.shared.num_embeddings, bias=False) | |
self.init_weights() | |
def get_encoder(self): | |
return self.led.get_encoder() | |
def get_decoder(self): | |
return self.led.get_decoder() | |
def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding: | |
new_embeddings = super().resize_token_embeddings(new_num_tokens) | |
self._resize_final_logits_bias(new_num_tokens) | |
return new_embeddings | |
def _resize_final_logits_bias(self, new_num_tokens: int) -> None: | |
old_num_tokens = self.final_logits_bias.shape[-1] | |
if new_num_tokens <= old_num_tokens: | |
new_bias = self.final_logits_bias[:, :new_num_tokens] | |
else: | |
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) | |
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) | |
self.register_buffer("final_logits_bias", new_bias) | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
decoder_input_ids=None, | |
decoder_attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
encoder_outputs=None, | |
global_attention_mask=None, | |
past_key_values=None, | |
inputs_embeds=None, | |
decoder_inputs_embeds=None, | |
labels=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for computing the masked language modeling loss. Indices should either be in ``[0, ..., | |
config.vocab_size]`` or -100 (see ``input_ids`` docstring). Tokens with indices set to ``-100`` are ignored | |
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``. | |
Returns: | |
Conditional generation example:: | |
>>> from transformers import LEDTokenizer, LEDForConditionalGeneration | |
>>> tokenizer = LEDTokenizer.from_pretrained('allenai/led-base-16384') | |
>>> TXT = "My friends are <mask> but they eat too many carbs." | |
>>> model = LEDForConditionalGeneration.from_pretrained('allenai/led-base-16384') | |
>>> input_ids = tokenizer([TXT], return_tensors='pt')['input_ids'] | |
>>> prediction = model.generate(input_ids)[0] | |
>>> print(tokenizer.decode(prediction, skip_special_tokens=True)) | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if labels is not None: | |
if decoder_input_ids is None: | |
decoder_input_ids = shift_tokens_right( | |
labels, self.config.pad_token_id, self.config.decoder_start_token_id | |
) | |
outputs = self.led( | |
input_ids, | |
attention_mask=attention_mask, | |
decoder_input_ids=decoder_input_ids, | |
decoder_attention_mask=decoder_attention_mask, | |
encoder_outputs=encoder_outputs, | |
global_attention_mask=global_attention_mask, | |
head_mask=head_mask, | |
decoder_head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
decoder_inputs_embeds=decoder_inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias | |
masked_lm_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) | |
if not return_dict: | |
output = (lm_logits,) + outputs[1:] | |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
return LEDSeq2SeqLMOutput( | |
loss=masked_lm_loss, | |
logits=lm_logits, | |
past_key_values=outputs.past_key_values, | |
decoder_hidden_states=outputs.decoder_hidden_states, | |
decoder_attentions=outputs.decoder_attentions, | |
cross_attentions=outputs.cross_attentions, | |
encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
encoder_hidden_states=outputs.encoder_hidden_states, | |
encoder_attentions=outputs.encoder_attentions, | |
encoder_global_attentions=outputs.encoder_global_attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
decoder_input_ids, | |
past=None, | |
attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
use_cache=None, | |
encoder_outputs=None, | |
**kwargs, | |
): | |
# cut decoder_input_ids if past is used | |
if past is not None: | |
decoder_input_ids = decoder_input_ids[:, -1:] | |
return { | |
"input_ids": None, # encoder_outputs is defined. input_ids not needed | |
"encoder_outputs": encoder_outputs, | |
"past_key_values": past, | |
"decoder_input_ids": decoder_input_ids, | |
"attention_mask": attention_mask, | |
"head_mask": head_mask, | |
"decoder_head_mask": decoder_head_mask, | |
"cross_attn_head_mask": cross_attn_head_mask, | |
"use_cache": use_cache, # change this to avoid caching (presumably for debugging) | |
} | |
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) | |
def _reorder_cache(past, beam_idx): | |
reordered_past = () | |
for layer_past in past: | |
# cached cross_attention states don't have to be reordered -> they are always the same | |
reordered_past += ( | |
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], | |
) | |
return reordered_past | |
class LEDForSequenceClassification(LEDPreTrainedModel): | |
def __init__(self, config: LEDConfig, **kwargs): | |
super().__init__(config, **kwargs) | |
self.led = LEDModel(config) | |
self.classification_head = LEDClassificationHead( | |
config.d_model, | |
config.d_model, | |
config.num_labels, | |
config.classifier_dropout, | |
) | |
self.led._init_weights(self.classification_head.dense) | |
self.led._init_weights(self.classification_head.out_proj) | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
decoder_input_ids=None, | |
decoder_attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
encoder_outputs=None, | |
global_attention_mask=None, | |
inputs_embeds=None, | |
decoder_inputs_embeds=None, | |
labels=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., | |
config.num_labels - 1]`. If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if labels is not None: | |
use_cache = False | |
if input_ids is None and inputs_embeds is not None: | |
raise NotImplementedError( | |
f"Passing input embeddings is currently not supported for {self.__class__.__name__}" | |
) | |
outputs = self.led( | |
input_ids, | |
attention_mask=attention_mask, | |
decoder_input_ids=decoder_input_ids, | |
decoder_attention_mask=decoder_attention_mask, | |
global_attention_mask=global_attention_mask, | |
head_mask=head_mask, | |
decoder_head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
encoder_outputs=encoder_outputs, | |
inputs_embeds=inputs_embeds, | |
decoder_inputs_embeds=decoder_inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] # last hidden state | |
eos_mask = input_ids.eq(self.config.eos_token_id) | |
if len(torch.unique(eos_mask.sum(1))) > 1: | |
raise ValueError("All examples must have the same number of <eos> tokens.") | |
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[ | |
:, -1, : | |
] | |
logits = self.classification_head(sentence_representation) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return LEDSeq2SeqSequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
decoder_hidden_states=outputs.decoder_hidden_states, | |
decoder_attentions=outputs.decoder_attentions, | |
cross_attentions=outputs.cross_attentions, | |
encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
encoder_hidden_states=outputs.encoder_hidden_states, | |
encoder_attentions=outputs.encoder_attentions, | |
encoder_global_attentions=outputs.encoder_global_attentions, | |
) | |
class LEDForQuestionAnswering(LEDPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
config.num_labels = 2 | |
self.num_labels = config.num_labels | |
self.led = LEDModel(config) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
self.led._init_weights(self.qa_outputs) | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
decoder_input_ids=None, | |
decoder_attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
encoder_outputs=None, | |
global_attention_mask=None, | |
start_positions=None, | |
end_positions=None, | |
inputs_embeds=None, | |
decoder_inputs_embeds=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if start_positions is not None and end_positions is not None: | |
use_cache = False | |
outputs = self.led( | |
input_ids, | |
attention_mask=attention_mask, | |
decoder_input_ids=decoder_input_ids, | |
decoder_attention_mask=decoder_attention_mask, | |
global_attention_mask=global_attention_mask, | |
head_mask=head_mask, | |
decoder_head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
encoder_outputs=encoder_outputs, | |
inputs_embeds=inputs_embeds, | |
decoder_inputs_embeds=decoder_inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1).contiguous() | |
end_logits = end_logits.squeeze(-1).contiguous() | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = ( | |
start_logits, | |
end_logits, | |
) + outputs[1:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return LEDSeq2SeqQuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
past_key_values=outputs.past_key_values, | |
decoder_hidden_states=outputs.decoder_hidden_states, | |
decoder_attentions=outputs.decoder_attentions, | |
cross_attentions=outputs.cross_attentions, | |
encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
encoder_hidden_states=outputs.encoder_hidden_states, | |
encoder_attentions=outputs.encoder_attentions, | |
encoder_global_attentions=outputs.encoder_global_attentions, | |
) | |