Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2021 Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" LED model configuration """ | |
from typing import List, Union | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
LED_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/config.json", | |
# See all LED models at https://huggingface.co/models?filter=led | |
} | |
class LEDConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a :class:`~transformers.LEDModel`. It is used to | |
instantiate an LED model according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the LED `allenai/led-base-16384 | |
<https://huggingface.co/allenai/led-base-16384>`__ architecture. | |
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model | |
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. | |
Args: | |
vocab_size (:obj:`int`, `optional`, defaults to 50265): | |
Vocabulary size of the LED model. Defines the number of different tokens that can be represented by the | |
:obj:`inputs_ids` passed when calling :class:`~transformers.LEDModel` or :class:`~transformers.TFLEDModel`. | |
d_model (:obj:`int`, `optional`, defaults to 1024): | |
Dimensionality of the layers and the pooler layer. | |
encoder_layers (:obj:`int`, `optional`, defaults to 12): | |
Number of encoder layers. | |
decoder_layers (:obj:`int`, `optional`, defaults to 12): | |
Number of decoder layers. | |
encoder_attention_heads (:obj:`int`, `optional`, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
decoder_attention_heads (:obj:`int`, `optional`, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer decoder. | |
decoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | |
encoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. | |
activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, | |
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. | |
dropout (:obj:`float`, `optional`, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
attention_dropout (:obj:`float`, `optional`, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
activation_dropout (:obj:`float`, `optional`, defaults to 0.0): | |
The dropout ratio for activations inside the fully connected layer. | |
classifier_dropout (:obj:`float`, `optional`, defaults to 0.0): | |
The dropout ratio for classifier. | |
max_encoder_position_embeddings (:obj:`int`, `optional`, defaults to 16384): | |
The maximum sequence length that the encoder might ever be used with. | |
max_decoder_position_embeddings (:obj:`int`, `optional`, defaults to 16384): | |
The maximum sequence length that the decoder might ever be used with. | |
init_std (:obj:`float`, `optional`, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
encoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0): | |
The LayerDrop probability for the encoder. See the `LayerDrop paper <see | |
https://arxiv.org/abs/1909.11556>`__ for more details. | |
decoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0): | |
The LayerDrop probability for the decoder. See the `LayerDrop paper <see | |
https://arxiv.org/abs/1909.11556>`__ for more details. | |
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Whether or not the model should return the last key/values attentions (not used by all models) | |
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
If True, use gradient checkpointing to save memory at the expense of slower backward pass. | |
Example:: | |
>>> from transformers import LEDModel, LEDConfig | |
>>> # Initializing a LED allenai/led-base-16384 style configuration | |
>>> configuration = LEDConfig() | |
>>> # Initializing a model from the allenai/led-base-16384 style configuration | |
>>> model = LEDModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
""" | |
model_type = "led" | |
def __init__( | |
self, | |
vocab_size=50265, | |
max_encoder_position_embeddings=16384, | |
max_decoder_position_embeddings=1024, | |
encoder_layers=12, | |
encoder_ffn_dim=4096, | |
encoder_attention_heads=16, | |
decoder_layers=12, | |
decoder_ffn_dim=4096, | |
decoder_attention_heads=16, | |
encoder_layerdrop=0.0, | |
decoder_layerdrop=0.0, | |
use_cache=True, | |
is_encoder_decoder=True, | |
activation_function="gelu", | |
d_model=1024, | |
dropout=0.1, | |
attention_dropout=0.0, | |
activation_dropout=0.0, | |
init_std=0.02, | |
decoder_start_token_id=2, | |
classifier_dropout=0.0, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
gradient_checkpointing=False, | |
attention_window: Union[List[int], int] = 512, | |
**kwargs | |
): | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
is_encoder_decoder=is_encoder_decoder, | |
decoder_start_token_id=decoder_start_token_id, | |
**kwargs, | |
) | |
self.vocab_size = vocab_size | |
self.max_encoder_position_embeddings = max_encoder_position_embeddings | |
self.max_decoder_position_embeddings = max_decoder_position_embeddings | |
self.d_model = d_model | |
self.encoder_ffn_dim = encoder_ffn_dim | |
self.encoder_layers = encoder_layers | |
self.encoder_attention_heads = encoder_attention_heads | |
self.decoder_ffn_dim = decoder_ffn_dim | |
self.decoder_layers = decoder_layers | |
self.decoder_attention_heads = decoder_attention_heads | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.activation_dropout = activation_dropout | |
self.activation_function = activation_function | |
self.init_std = init_std | |
self.encoder_layerdrop = encoder_layerdrop | |
self.decoder_layerdrop = decoder_layerdrop | |
self.classifier_dropout = classifier_dropout | |
self.use_cache = use_cache | |
self.num_hidden_layers = encoder_layers | |
self.attention_window = attention_window | |
self.gradient_checkpointing = gradient_checkpointing | |
def num_attention_heads(self) -> int: | |
return self.encoder_attention_heads | |
def hidden_size(self) -> int: | |
return self.d_model | |
def attention_probs_dropout_prob(self) -> float: | |
return self.attention_dropout | |
def initializer_range(self) -> float: | |
return self.init_std | |