Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2021 The I-BERT Authors (Sehoon Kim, Amir Gholami, Zhewei Yao, | |
# Michael Mahoney, Kurt Keutzer - UC Berkeley) and The HuggingFace Inc. team. | |
# Copyright (c) 20121, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch I-BERT model. """ | |
import math | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss, MSELoss | |
from ...activations import gelu | |
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward | |
from ...modeling_outputs import ( | |
BaseModelOutputWithPastAndCrossAttentions, | |
BaseModelOutputWithPoolingAndCrossAttentions, | |
MaskedLMOutput, | |
MultipleChoiceModelOutput, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import logging | |
from .configuration_ibert import IBertConfig | |
from .quant_modules import IntGELU, IntLayerNorm, IntSoftmax, QuantAct, QuantEmbedding, QuantLinear | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "kssteven/ibert-roberta-base" | |
_CONFIG_FOR_DOC = "IBertConfig" | |
_TOKENIZER_FOR_DOC = "RobertaTokenizer" | |
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"kssteven/ibert-roberta-base", | |
"kssteven/ibert-roberta-large", | |
"kssteven/ibert-roberta-large-mnli", | |
] | |
class IBertEmbeddings(nn.Module): | |
""" | |
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.quant_mode = config.quant_mode | |
self.embedding_bit = 8 | |
self.embedding_act_bit = 16 | |
self.act_bit = 8 | |
self.ln_input_bit = 22 | |
self.ln_output_bit = 32 | |
self.word_embeddings = QuantEmbedding( | |
config.vocab_size, | |
config.hidden_size, | |
padding_idx=config.pad_token_id, | |
weight_bit=self.embedding_bit, | |
quant_mode=self.quant_mode, | |
) | |
self.token_type_embeddings = QuantEmbedding( | |
config.type_vocab_size, config.hidden_size, weight_bit=self.embedding_bit, quant_mode=self.quant_mode | |
) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
# End copy | |
self.padding_idx = config.pad_token_id | |
self.position_embeddings = QuantEmbedding( | |
config.max_position_embeddings, | |
config.hidden_size, | |
padding_idx=self.padding_idx, | |
weight_bit=self.embedding_bit, | |
quant_mode=self.quant_mode, | |
) | |
# Integer-only addition between embeddings | |
self.embeddings_act1 = QuantAct(self.embedding_act_bit, quant_mode=self.quant_mode) | |
self.embeddings_act2 = QuantAct(self.embedding_act_bit, quant_mode=self.quant_mode) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = IntLayerNorm( | |
config.hidden_size, | |
eps=config.layer_norm_eps, | |
output_bit=self.ln_output_bit, | |
quant_mode=self.quant_mode, | |
force_dequant=config.force_dequant, | |
) | |
self.output_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward( | |
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 | |
): | |
if position_ids is None: | |
if input_ids is not None: | |
# Create the position ids from the input token ids. Any padded tokens remain padded. | |
position_ids = create_position_ids_from_input_ids( | |
input_ids, self.padding_idx, past_key_values_length | |
).to(input_ids.device) | |
else: | |
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
if token_type_ids is None: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
if inputs_embeds is None: | |
inputs_embeds, inputs_embeds_scaling_factor = self.word_embeddings(input_ids) | |
else: | |
inputs_embeds_scaling_factor = None | |
token_type_embeddings, token_type_embeddings_scaling_factor = self.token_type_embeddings(token_type_ids) | |
embeddings, embeddings_scaling_factor = self.embeddings_act1( | |
inputs_embeds, | |
inputs_embeds_scaling_factor, | |
identity=token_type_embeddings, | |
identity_scaling_factor=token_type_embeddings_scaling_factor, | |
) | |
if self.position_embedding_type == "absolute": | |
position_embeddings, position_embeddings_scaling_factor = self.position_embeddings(position_ids) | |
embeddings, embeddings_scaling_factor = self.embeddings_act1( | |
embeddings, | |
embeddings_scaling_factor, | |
identity=position_embeddings, | |
identity_scaling_factor=position_embeddings_scaling_factor, | |
) | |
embeddings, embeddings_scaling_factor = self.LayerNorm(embeddings, embeddings_scaling_factor) | |
embeddings = self.dropout(embeddings) | |
embeddings, embeddings_scaling_factor = self.output_activation(embeddings, embeddings_scaling_factor) | |
return embeddings, embeddings_scaling_factor | |
def create_position_ids_from_inputs_embeds(self, inputs_embeds): | |
""" | |
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. | |
Args: | |
inputs_embeds: torch.Tensor | |
Returns: torch.Tensor | |
""" | |
input_shape = inputs_embeds.size()[:-1] | |
sequence_length = input_shape[1] | |
position_ids = torch.arange( | |
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device | |
) | |
return position_ids.unsqueeze(0).expand(input_shape) | |
class IBertSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({config.num_attention_heads})" | |
) | |
self.quant_mode = config.quant_mode | |
self.weight_bit = 8 | |
self.bias_bit = 32 | |
self.act_bit = 8 | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
# Q, K, V Linear layers | |
self.query = QuantLinear( | |
config.hidden_size, | |
self.all_head_size, | |
bias=True, | |
weight_bit=self.weight_bit, | |
bias_bit=self.bias_bit, | |
quant_mode=self.quant_mode, | |
per_channel=True, | |
) | |
self.key = QuantLinear( | |
config.hidden_size, | |
self.all_head_size, | |
bias=True, | |
weight_bit=self.weight_bit, | |
bias_bit=self.bias_bit, | |
quant_mode=self.quant_mode, | |
per_channel=True, | |
) | |
self.value = QuantLinear( | |
config.hidden_size, | |
self.all_head_size, | |
bias=True, | |
weight_bit=self.weight_bit, | |
bias_bit=self.bias_bit, | |
quant_mode=self.quant_mode, | |
per_channel=True, | |
) | |
# Requantization (32bit -> 8bit) for Q, K, V activations | |
self.query_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) | |
self.key_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) | |
self.value_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) | |
self.output_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
assert ( | |
self.position_embedding_type == "absolute" | |
), "I-BERT only supports 'absolute' for `config.position_embedding_type`" | |
self.softmax = IntSoftmax(self.act_bit, quant_mode=self.quant_mode, force_dequant=config.force_dequant) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward( | |
self, | |
hidden_states, | |
hidden_states_scaling_factor, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
): | |
# Projection | |
mixed_query_layer, mixed_query_layer_scaling_factor = self.query(hidden_states, hidden_states_scaling_factor) | |
mixed_key_layer, mixed_key_layer_scaling_factor = self.key(hidden_states, hidden_states_scaling_factor) | |
mixed_value_layer, mixed_value_layer_scaling_factor = self.value(hidden_states, hidden_states_scaling_factor) | |
# Requantization | |
query_layer, query_layer_scaling_factor = self.query_activation( | |
mixed_query_layer, mixed_query_layer_scaling_factor | |
) | |
key_layer, key_layer_scaling_factor = self.key_activation(mixed_key_layer, mixed_key_layer_scaling_factor) | |
value_layer, value_layer_scaling_factor = self.value_activation( | |
mixed_value_layer, mixed_value_layer_scaling_factor | |
) | |
# Transpose | |
query_layer = self.transpose_for_scores(query_layer) | |
key_layer = self.transpose_for_scores(key_layer) | |
value_layer = self.transpose_for_scores(value_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
scale = math.sqrt(self.attention_head_size) | |
attention_scores = attention_scores / scale | |
if self.quant_mode: | |
attention_scores_scaling_factor = query_layer_scaling_factor * key_layer_scaling_factor / scale | |
else: | |
attention_scores_scaling_factor = None | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in IBertModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs, attention_probs_scaling_factor = self.softmax( | |
attention_scores, attention_scores_scaling_factor | |
) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
if attention_probs_scaling_factor is not None: | |
context_layer_scaling_factor = attention_probs_scaling_factor * value_layer_scaling_factor | |
else: | |
context_layer_scaling_factor = None | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
# requantization: 32-bit -> 8-bit | |
context_layer, context_layer_scaling_factor = self.output_activation( | |
context_layer, context_layer_scaling_factor | |
) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
output_scaling_factor = ( | |
(context_layer_scaling_factor, attention_probs_scaling_factor) | |
if output_attentions | |
else (context_layer_scaling_factor,) | |
) | |
return outputs, output_scaling_factor | |
class IBertSelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.quant_mode = config.quant_mode | |
self.act_bit = 8 | |
self.weight_bit = 8 | |
self.bias_bit = 32 | |
self.ln_input_bit = 22 | |
self.ln_output_bit = 32 | |
self.dense = QuantLinear( | |
config.hidden_size, | |
config.hidden_size, | |
bias=True, | |
weight_bit=self.weight_bit, | |
bias_bit=self.bias_bit, | |
quant_mode=self.quant_mode, | |
per_channel=True, | |
) | |
self.ln_input_act = QuantAct(self.ln_input_bit, quant_mode=self.quant_mode) | |
self.LayerNorm = IntLayerNorm( | |
config.hidden_size, | |
eps=config.layer_norm_eps, | |
output_bit=self.ln_output_bit, | |
quant_mode=self.quant_mode, | |
force_dequant=config.force_dequant, | |
) | |
self.output_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, hidden_states_scaling_factor, input_tensor, input_tensor_scaling_factor): | |
hidden_states, hidden_states_scaling_factor = self.dense(hidden_states, hidden_states_scaling_factor) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states, hidden_states_scaling_factor = self.ln_input_act( | |
hidden_states, | |
hidden_states_scaling_factor, | |
identity=input_tensor, | |
identity_scaling_factor=input_tensor_scaling_factor, | |
) | |
hidden_states, hidden_states_scaling_factor = self.LayerNorm(hidden_states, hidden_states_scaling_factor) | |
hidden_states, hidden_states_scaling_factor = self.output_activation( | |
hidden_states, hidden_states_scaling_factor | |
) | |
return hidden_states, hidden_states_scaling_factor | |
class IBertAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.quant_mode = config.quant_mode | |
self.self = IBertSelfAttention(config) | |
self.output = IBertSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward( | |
self, | |
hidden_states, | |
hidden_states_scaling_factor, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
): | |
self_outputs, self_outputs_scaling_factor = self.self( | |
hidden_states, | |
hidden_states_scaling_factor, | |
attention_mask, | |
head_mask, | |
output_attentions, | |
) | |
attention_output, attention_output_scaling_factor = self.output( | |
self_outputs[0], self_outputs_scaling_factor[0], hidden_states, hidden_states_scaling_factor | |
) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
outputs_scaling_factor = (attention_output_scaling_factor,) + self_outputs_scaling_factor[1:] | |
return outputs, outputs_scaling_factor | |
class IBertIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.quant_mode = config.quant_mode | |
self.act_bit = 8 | |
self.weight_bit = 8 | |
self.bias_bit = 32 | |
self.dense = QuantLinear( | |
config.hidden_size, | |
config.intermediate_size, | |
bias=True, | |
weight_bit=self.weight_bit, | |
bias_bit=self.bias_bit, | |
quant_mode=self.quant_mode, | |
per_channel=True, | |
) | |
assert config.hidden_act == "gelu", "I-BERT only supports 'gelu' for `config.hidden_act`" | |
self.intermediate_act_fn = IntGELU(quant_mode=self.quant_mode, force_dequant=config.force_dequant) | |
self.output_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) | |
def forward(self, hidden_states, hidden_states_scaling_factor): | |
hidden_states, hidden_states_scaling_factor = self.dense(hidden_states, hidden_states_scaling_factor) | |
hidden_states, hidden_states_scaling_factor = self.intermediate_act_fn( | |
hidden_states, hidden_states_scaling_factor | |
) | |
# Requantization: 32bit -> 8-bit | |
hidden_states, hidden_states_scaling_factor = self.output_activation( | |
hidden_states, hidden_states_scaling_factor | |
) | |
return hidden_states, hidden_states_scaling_factor | |
class IBertOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.quant_mode = config.quant_mode | |
self.act_bit = 8 | |
self.weight_bit = 8 | |
self.bias_bit = 32 | |
self.ln_input_bit = 22 | |
self.ln_output_bit = 32 | |
self.dense = QuantLinear( | |
config.intermediate_size, | |
config.hidden_size, | |
bias=True, | |
weight_bit=self.weight_bit, | |
bias_bit=self.bias_bit, | |
quant_mode=self.quant_mode, | |
per_channel=True, | |
) | |
self.ln_input_act = QuantAct(self.ln_input_bit, quant_mode=self.quant_mode) | |
self.LayerNorm = IntLayerNorm( | |
config.hidden_size, | |
eps=config.layer_norm_eps, | |
output_bit=self.ln_output_bit, | |
quant_mode=self.quant_mode, | |
force_dequant=config.force_dequant, | |
) | |
self.output_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, hidden_states_scaling_factor, input_tensor, input_tensor_scaling_factor): | |
hidden_states, hidden_states_scaling_factor = self.dense(hidden_states, hidden_states_scaling_factor) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states, hidden_states_scaling_factor = self.ln_input_act( | |
hidden_states, | |
hidden_states_scaling_factor, | |
identity=input_tensor, | |
identity_scaling_factor=input_tensor_scaling_factor, | |
) | |
hidden_states, hidden_states_scaling_factor = self.LayerNorm(hidden_states, hidden_states_scaling_factor) | |
hidden_states, hidden_states_scaling_factor = self.output_activation( | |
hidden_states, hidden_states_scaling_factor | |
) | |
return hidden_states, hidden_states_scaling_factor | |
class IBertLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.quant_mode = config.quant_mode | |
self.act_bit = 8 | |
self.seq_len_dim = 1 | |
self.attention = IBertAttention(config) | |
self.intermediate = IBertIntermediate(config) | |
self.output = IBertOutput(config) | |
self.pre_intermediate_act = QuantAct(self.act_bit, quant_mode=self.quant_mode) | |
self.pre_output_act = QuantAct(self.act_bit, quant_mode=self.quant_mode) | |
def forward( | |
self, | |
hidden_states, | |
hidden_states_scaling_factor, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
): | |
self_attention_outputs, self_attention_outputs_scaling_factor = self.attention( | |
hidden_states, | |
hidden_states_scaling_factor, | |
attention_mask, | |
head_mask, | |
output_attentions=output_attentions, | |
) | |
attention_output = self_attention_outputs[0] | |
attention_output_scaling_factor = self_attention_outputs_scaling_factor[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
layer_output, layer_output_scaling_factor = self.feed_forward_chunk( | |
attention_output, attention_output_scaling_factor | |
) | |
outputs = (layer_output,) + outputs | |
return outputs | |
def feed_forward_chunk(self, attention_output, attention_output_scaling_factor): | |
attention_output, attention_output_scaling_factor = self.pre_intermediate_act( | |
attention_output, attention_output_scaling_factor | |
) | |
intermediate_output, intermediate_output_scaling_factor = self.intermediate( | |
attention_output, attention_output_scaling_factor | |
) | |
intermediate_output, intermediate_output_scaling_factor = self.pre_output_act( | |
intermediate_output, intermediate_output_scaling_factor | |
) | |
layer_output, layer_output_scaling_factor = self.output( | |
intermediate_output, intermediate_output_scaling_factor, attention_output, attention_output_scaling_factor | |
) | |
return layer_output, layer_output_scaling_factor | |
class IBertEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.quant_mode = config.quant_mode | |
self.layer = nn.ModuleList([IBertLayer(config) for _ in range(config.num_hidden_layers)]) | |
def forward( | |
self, | |
hidden_states, | |
hidden_states_scaling_factor, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
all_cross_attentions = None # `config.add_cross_attention` is not supported | |
next_decoder_cache = None # `config.use_cache` is not supported | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
if getattr(self.config, "gradient_checkpointing", False) and self.training: | |
raise NotImplementedError("gradient checkpointing is not currently supported") | |
else: | |
layer_outputs = layer_module( | |
hidden_states, | |
hidden_states_scaling_factor, | |
attention_mask, | |
layer_head_mask, | |
output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple( | |
v | |
for v in [ | |
hidden_states, | |
next_decoder_cache, | |
all_hidden_states, | |
all_self_attentions, | |
all_cross_attentions, | |
] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_decoder_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
cross_attentions=all_cross_attentions, | |
) | |
class IBertPooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.quant_mode = config.quant_mode | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class IBertPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = IBertConfig | |
base_model_prefix = "ibert" | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, (QuantLinear, nn.Linear)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, (QuantEmbedding, nn.Embedding)): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, (IntLayerNorm, nn.LayerNorm)): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def resize_token_embeddings(self, new_num_tokens=None): | |
raise NotImplementedError("`resize_token_embeddings` is not supported for I-BERT.") | |
IBERT_START_DOCSTRING = r""" | |
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic | |
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, | |
pruning heads etc.) | |
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ | |
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to | |
general usage and behavior. | |
Parameters: | |
config (:class:`~transformers.IBertConfig`): Model configuration class with all the parameters of the | |
model. Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model | |
weights. | |
""" | |
IBERT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using :class:`~transformers.RobertaTokenizer`. See | |
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): | |
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, | |
1]``: | |
- 0 corresponds to a `sentence A` token, | |
- 1 corresponds to a `sentence B` token. | |
`What are token type IDs? <../glossary.html#token-type-ids>`_ | |
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, | |
config.max_position_embeddings - 1]``. | |
`What are position IDs? <../glossary.html#position-ids>`_ | |
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
vectors than the model's internal embedding lookup matrix. | |
output_attentions (:obj:`bool`, `optional`): | |
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
tensors for more detail. | |
output_hidden_states (:obj:`bool`, `optional`): | |
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
more detail. | |
return_dict (:obj:`bool`, `optional`): | |
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
""" | |
class IBertModel(IBertPreTrainedModel): | |
""" | |
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of | |
cross-attention is added between the self-attention layers, following the architecture described in `Attention is | |
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, | |
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. | |
""" | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def __init__(self, config, add_pooling_layer=True): | |
super().__init__(config) | |
self.config = config | |
self.quant_mode = config.quant_mode | |
self.embeddings = IBertEmbeddings(config) | |
self.encoder = IBertEncoder(config) | |
self.pooler = IBertPooler(config) if add_pooling_layer else None | |
self.init_weights() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
batch_size, seq_length = input_shape | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
batch_size, seq_length = input_shape | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if attention_mask is None: | |
attention_mask = torch.ones(((batch_size, seq_length)), device=device) | |
if token_type_ids is None: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
# ourselves in which case we just need to make it broadcastable to all heads. | |
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
embedding_output, embedding_output_scaling_factor = self.embeddings( | |
input_ids=input_ids, | |
position_ids=position_ids, | |
token_type_ids=token_type_ids, | |
inputs_embeds=inputs_embeds, | |
) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
embedding_output_scaling_factor, | |
attention_mask=extended_attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPoolingAndCrossAttentions( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
past_key_values=encoder_outputs.past_key_values, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
cross_attentions=encoder_outputs.cross_attentions, | |
) | |
class IBertForMaskedLM(IBertPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.bias"] | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.ibert = IBertModel(config, add_pooling_layer=False) | |
self.lm_head = IBertLMHead(config) | |
self.init_weights() | |
def get_output_embeddings(self): | |
return self.lm_head.decoder | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head.decoder = new_embeddings | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., | |
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored | |
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` | |
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): | |
Used to hide legacy arguments that have been deprecated. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.ibert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
prediction_scores = self.lm_head(sequence_output) | |
masked_lm_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
if not return_dict: | |
output = (prediction_scores,) + outputs[2:] | |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
return MaskedLMOutput( | |
loss=masked_lm_loss, | |
logits=prediction_scores, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class IBertLMHead(nn.Module): | |
"""I-BERT Head for masked language modeling.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` | |
self.decoder.bias = self.bias | |
def forward(self, features, **kwargs): | |
x = self.dense(features) | |
x = gelu(x) | |
x = self.layer_norm(x) | |
# project back to size of vocabulary with bias | |
x = self.decoder(x) | |
return x | |
class IBertForSequenceClassification(IBertPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.ibert = IBertModel(config, add_pooling_layer=False) | |
self.classifier = IBertClassificationHead(config) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., | |
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), | |
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.ibert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
if self.num_labels == 1: | |
# We are doing regression | |
loss_fct = MSELoss() | |
loss = loss_fct(logits.view(-1), labels.view(-1)) | |
else: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class IBertForMultipleChoice(IBertPreTrainedModel): | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.ibert = IBertModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, 1) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
token_type_ids=None, | |
attention_mask=None, | |
labels=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., | |
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See | |
:obj:`input_ids` above) | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | |
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None | |
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
flat_inputs_embeds = ( | |
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) | |
if inputs_embeds is not None | |
else None | |
) | |
outputs = self.ibert( | |
flat_input_ids, | |
position_ids=flat_position_ids, | |
token_type_ids=flat_token_type_ids, | |
attention_mask=flat_attention_mask, | |
head_mask=head_mask, | |
inputs_embeds=flat_inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
pooled_output = outputs[1] | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) | |
reshaped_logits = logits.view(-1, num_choices) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels) | |
if not return_dict: | |
output = (reshaped_logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return MultipleChoiceModelOutput( | |
loss=loss, | |
logits=reshaped_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class IBertForTokenClassification(IBertPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.ibert = IBertModel(config, add_pooling_layer=False) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - | |
1]``. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.ibert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# Only keep active parts of the loss | |
if attention_mask is not None: | |
active_loss = attention_mask.view(-1) == 1 | |
active_logits = logits.view(-1, self.num_labels) | |
active_labels = torch.where( | |
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) | |
) | |
loss = loss_fct(active_logits, active_labels) | |
else: | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class IBertClassificationHead(nn.Module): | |
"""Head for sentence-level classification tasks.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
def forward(self, features, **kwargs): | |
hidden_states = features[:, 0, :] # take <s> token (equiv. to [CLS]) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.dense(hidden_states) | |
hidden_states = torch.tanh(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.out_proj(hidden_states) | |
return hidden_states | |
class IBertForQuestionAnswering(IBertPreTrainedModel): | |
_keys_to_ignore_on_load_unexpected = [r"pooler"] | |
_keys_to_ignore_on_load_missing = [r"position_ids"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.ibert = IBertModel(config, add_pooling_layer=False) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
start_positions=None, | |
end_positions=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the | |
sequence are not taken into account for computing the loss. | |
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the | |
sequence are not taken into account for computing the loss. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.ibert( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1).contiguous() | |
end_logits = end_logits.squeeze(-1).contiguous() | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + outputs[2:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return QuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): | |
""" | |
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols | |
are ignored. This is modified from fairseq's `utils.make_positions`. | |
Args: | |
input_ids (:obj:`torch.LongTensor`): | |
Indices of input sequence tokens in the vocabulary. | |
Returns: torch.Tensor | |
""" | |
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. | |
mask = input_ids.ne(padding_idx).int() | |
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask | |
return incremental_indices.long() + padding_idx | |