Spaces:
Sleeping
Sleeping
| # coding=utf-8 | |
| # Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ PyTorch Hubert model. """ | |
| from typing import Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from transformers.deepspeed import is_deepspeed_zero3_enabled | |
| from ...activations import ACT2FN | |
| from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings | |
| from ...modeling_outputs import BaseModelOutput, CausalLMOutput | |
| from ...modeling_utils import PreTrainedModel | |
| from ...utils import logging | |
| from .configuration_hubert import HubertConfig | |
| logger = logging.get_logger(__name__) | |
| _CONFIG_FOR_DOC = "HubertConfig" | |
| _CHECKPOINT_FOR_DOC = "facebook/hubert-base-ls960" | |
| HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "facebook/hubert-base-ls960", | |
| # See all Hubert models at https://huggingface.co/models?filter=hubert | |
| ] | |
| # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices | |
| def _compute_mask_indices( | |
| shape: Tuple[int, int], | |
| mask_prob: float, | |
| mask_length: int, | |
| device: torch.device, | |
| attention_mask: Optional[torch.tensor] = None, | |
| min_masks: int = 0, | |
| ) -> torch.tensor: | |
| """ | |
| Computes random mask spans for a given shape. Used to implement `SpecAugment: A Simple Data Augmentation Method for | |
| ASR <https://arxiv.org/abs/1904.08779>`__. | |
| Args: | |
| shape: the the shape for which to compute masks. | |
| should be of size 2 where first element is batch size and 2nd is timesteps | |
| mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by | |
| number of timesteps divided by length of mask span to mask approximately this percentage of all elements. | |
| however due to overlaps, the actual number will be smaller (unless no_overlap is True) | |
| mask_length: size of the mask | |
| min_masks: minimum number of masked spans | |
| """ | |
| batch_size, sequence_length = shape | |
| if mask_length < 1: | |
| raise ValueError("`mask_length` has to be bigger than 0.") | |
| if mask_length > sequence_length: | |
| raise ValueError( | |
| f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`" | |
| ) | |
| # compute number of masked spans in batch | |
| num_masked_spans = int(mask_prob * sequence_length / mask_length + torch.rand((1,)).item()) | |
| num_masked_spans = max(num_masked_spans, min_masks) | |
| # make sure num masked indices <= sequence_length | |
| if num_masked_spans * mask_length > sequence_length: | |
| num_masked_spans = sequence_length // mask_length | |
| # SpecAugment mask to fill | |
| spec_aug_mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool) | |
| # uniform distribution to sample from, make sure that offset samples are < sequence_length | |
| uniform_dist = torch.ones((batch_size, sequence_length - (mask_length - 1)), device=device) | |
| # get random indices to mask | |
| spec_aug_mask_idxs = torch.multinomial(uniform_dist, num_masked_spans) | |
| # expand masked indices to masked spans | |
| spec_aug_mask_idxs = ( | |
| spec_aug_mask_idxs.unsqueeze(dim=-1) | |
| .expand((batch_size, num_masked_spans, mask_length)) | |
| .reshape(batch_size, num_masked_spans * mask_length) | |
| ) | |
| offsets = ( | |
| torch.arange(mask_length, device=device)[None, None, :] | |
| .expand((batch_size, num_masked_spans, mask_length)) | |
| .reshape(batch_size, num_masked_spans * mask_length) | |
| ) | |
| spec_aug_mask_idxs = spec_aug_mask_idxs + offsets | |
| # scatter indices to mask | |
| spec_aug_mask = spec_aug_mask.scatter(1, spec_aug_mask_idxs, True) | |
| return spec_aug_mask | |
| # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->Hubert | |
| class HubertNoLayerNormConvLayer(nn.Module): | |
| def __init__(self, config, layer_id=0): | |
| super().__init__() | |
| self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1 | |
| self.out_conv_dim = config.conv_dim[layer_id] | |
| self.conv = nn.Conv1d( | |
| self.in_conv_dim, | |
| self.out_conv_dim, | |
| kernel_size=config.conv_kernel[layer_id], | |
| stride=config.conv_stride[layer_id], | |
| bias=config.conv_bias, | |
| ) | |
| self.activation = ACT2FN[config.feat_extract_activation] | |
| def forward(self, hidden_states): | |
| hidden_states = self.conv(hidden_states) | |
| hidden_states = self.activation(hidden_states) | |
| return hidden_states | |
| # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->Hubert | |
| class HubertLayerNormConvLayer(nn.Module): | |
| def __init__(self, config, layer_id=0): | |
| super().__init__() | |
| self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1 | |
| self.out_conv_dim = config.conv_dim[layer_id] | |
| self.conv = nn.Conv1d( | |
| self.in_conv_dim, | |
| self.out_conv_dim, | |
| kernel_size=config.conv_kernel[layer_id], | |
| stride=config.conv_stride[layer_id], | |
| bias=config.conv_bias, | |
| ) | |
| self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) | |
| self.activation = ACT2FN[config.feat_extract_activation] | |
| def forward(self, hidden_states): | |
| hidden_states = self.conv(hidden_states) | |
| hidden_states = hidden_states.transpose(-2, -1) | |
| hidden_states = self.layer_norm(hidden_states) | |
| hidden_states = hidden_states.transpose(-2, -1) | |
| hidden_states = self.activation(hidden_states) | |
| return hidden_states | |
| # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->Hubert | |
| class HubertGroupNormConvLayer(nn.Module): | |
| def __init__(self, config, layer_id=0): | |
| super().__init__() | |
| self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1 | |
| self.out_conv_dim = config.conv_dim[layer_id] | |
| self.conv = nn.Conv1d( | |
| self.in_conv_dim, | |
| self.out_conv_dim, | |
| kernel_size=config.conv_kernel[layer_id], | |
| stride=config.conv_stride[layer_id], | |
| bias=config.conv_bias, | |
| ) | |
| self.activation = ACT2FN[config.feat_extract_activation] | |
| self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) | |
| def forward(self, hidden_states): | |
| hidden_states = self.conv(hidden_states) | |
| hidden_states = self.layer_norm(hidden_states) | |
| hidden_states = self.activation(hidden_states) | |
| return hidden_states | |
| # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->Hubert | |
| class HubertPositionalConvEmbedding(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.conv = nn.Conv1d( | |
| config.hidden_size, | |
| config.hidden_size, | |
| kernel_size=config.num_conv_pos_embeddings, | |
| padding=config.num_conv_pos_embeddings // 2, | |
| groups=config.num_conv_pos_embedding_groups, | |
| ) | |
| if is_deepspeed_zero3_enabled(): | |
| import deepspeed | |
| with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): | |
| self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) | |
| deepspeed.zero.register_external_parameter(self, self.conv.weight_v) | |
| deepspeed.zero.register_external_parameter(self, self.conv.weight_g) | |
| else: | |
| self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) | |
| self.padding = HubertSamePadLayer(config.num_conv_pos_embeddings) | |
| self.activation = ACT2FN[config.feat_extract_activation] | |
| def forward(self, hidden_states): | |
| hidden_states = hidden_states.transpose(1, 2) | |
| hidden_states = self.conv(hidden_states) | |
| hidden_states = self.padding(hidden_states) | |
| hidden_states = self.activation(hidden_states) | |
| hidden_states = hidden_states.transpose(1, 2) | |
| return hidden_states | |
| # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->Hubert | |
| class HubertSamePadLayer(nn.Module): | |
| def __init__(self, num_conv_pos_embeddings): | |
| super().__init__() | |
| self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 | |
| def forward(self, hidden_states): | |
| if self.num_pad_remove > 0: | |
| hidden_states = hidden_states[:, :, : -self.num_pad_remove] | |
| return hidden_states | |
| # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureExtractor with Wav2Vec2->Hubert | |
| class HubertFeatureExtractor(nn.Module): | |
| """Construct the featurs from raw audio waveform""" | |
| def __init__(self, config): | |
| super().__init__() | |
| if config.feat_extract_norm == "group": | |
| conv_layers = [HubertGroupNormConvLayer(config, layer_id=0)] + [ | |
| HubertNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) | |
| ] | |
| elif config.feat_extract_norm == "layer": | |
| conv_layers = [HubertLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)] | |
| else: | |
| raise ValueError( | |
| f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" | |
| ) | |
| self.conv_layers = nn.ModuleList(conv_layers) | |
| def _freeze_parameters(self): | |
| for param in self.parameters(): | |
| param.requires_grad = False | |
| def forward(self, input_values): | |
| hidden_states = input_values[:, None] | |
| for conv_layer in self.conv_layers: | |
| hidden_states = conv_layer(hidden_states) | |
| return hidden_states | |
| class HubertFeatureProjection(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) | |
| self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) | |
| self.dropout = nn.Dropout(config.feat_proj_dropout) | |
| def forward(self, hidden_states): | |
| # non-projected hidden states are needed for quantization | |
| hidden_states = self.layer_norm(hidden_states) | |
| hidden_states = self.projection(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| return hidden_states | |
| # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Hubert | |
| class HubertAttention(nn.Module): | |
| """Multi-headed attention from 'Attention Is All You Need' paper""" | |
| def __init__( | |
| self, | |
| embed_dim: int, | |
| num_heads: int, | |
| dropout: float = 0.0, | |
| is_decoder: bool = False, | |
| bias: bool = True, | |
| ): | |
| super().__init__() | |
| self.embed_dim = embed_dim | |
| self.num_heads = num_heads | |
| self.dropout = dropout | |
| self.head_dim = embed_dim // num_heads | |
| assert ( | |
| self.head_dim * num_heads == self.embed_dim | |
| ), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {num_heads})." | |
| self.scaling = self.head_dim ** -0.5 | |
| self.is_decoder = is_decoder | |
| self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
| def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
| return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| key_value_states: Optional[torch.Tensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| layer_head_mask: Optional[torch.Tensor] = None, | |
| output_attentions: bool = False, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| """Input shape: Batch x Time x Channel""" | |
| # if key_value_states are provided this layer is used as a cross-attention layer | |
| # for the decoder | |
| is_cross_attention = key_value_states is not None | |
| bsz, tgt_len, embed_dim = hidden_states.size() | |
| # get query proj | |
| query_states = self.q_proj(hidden_states) * self.scaling | |
| # get key, value proj | |
| if is_cross_attention and past_key_value is not None: | |
| # reuse k,v, cross_attentions | |
| key_states = past_key_value[0] | |
| value_states = past_key_value[1] | |
| elif is_cross_attention: | |
| # cross_attentions | |
| key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
| elif past_key_value is not None: | |
| # reuse k, v, self_attention | |
| key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
| key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
| value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
| else: | |
| # self_attention | |
| key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
| if self.is_decoder: | |
| # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
| # Further calls to cross_attention layer can then reuse all cross-attention | |
| # key/value_states (first "if" case) | |
| # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
| # all previous decoder key/value_states. Further calls to uni-directional self-attention | |
| # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
| # if encoder bi-directional self-attention `past_key_value` is always `None` | |
| past_key_value = (key_states, value_states) | |
| proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
| query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
| key_states = key_states.view(*proj_shape) | |
| value_states = value_states.view(*proj_shape) | |
| src_len = key_states.size(1) | |
| attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
| if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}" | |
| ) | |
| if attention_mask is not None: | |
| if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
| ) | |
| attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
| if layer_head_mask is not None: | |
| if layer_head_mask.size() != (self.num_heads,): | |
| raise ValueError( | |
| f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" | |
| ) | |
| attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| if output_attentions: | |
| # this operation is a bit awkward, but it's required to | |
| # make sure that attn_weights keeps its gradient. | |
| # In order to do so, attn_weights have to be reshaped | |
| # twice and have to be reused in the following | |
| attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
| else: | |
| attn_weights_reshaped = None | |
| attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
| attn_output = torch.bmm(attn_probs, value_states) | |
| if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
| raise ValueError( | |
| f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}" | |
| ) | |
| attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
| attn_output = attn_output.transpose(1, 2) | |
| attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) | |
| attn_output = self.out_proj(attn_output) | |
| return attn_output, attn_weights_reshaped, past_key_value | |
| # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->Hubert | |
| class HubertFeedForward(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.intermediate_dropout = nn.Dropout(config.activation_dropout) | |
| self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
| if isinstance(config.hidden_act, str): | |
| self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
| else: | |
| self.intermediate_act_fn = config.hidden_act | |
| self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
| self.output_dropout = nn.Dropout(config.hidden_dropout) | |
| def forward(self, hidden_states): | |
| hidden_states = self.intermediate_dense(hidden_states) | |
| hidden_states = self.intermediate_act_fn(hidden_states) | |
| hidden_states = self.intermediate_dropout(hidden_states) | |
| hidden_states = self.output_dense(hidden_states) | |
| hidden_states = self.output_dropout(hidden_states) | |
| return hidden_states | |
| # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->Hubert | |
| class HubertEncoderLayer(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.attention = HubertAttention( | |
| embed_dim=config.hidden_size, | |
| num_heads=config.num_attention_heads, | |
| dropout=config.attention_dropout, | |
| is_decoder=False, | |
| ) | |
| self.dropout = nn.Dropout(config.hidden_dropout) | |
| self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.feed_forward = HubertFeedForward(config) | |
| self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| def forward(self, hidden_states, attention_mask=None, output_attentions=False): | |
| attn_residual = hidden_states | |
| hidden_states, attn_weights, _ = self.attention( | |
| hidden_states, attention_mask=attention_mask, output_attentions=output_attentions | |
| ) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = attn_residual + hidden_states | |
| hidden_states = self.layer_norm(hidden_states) | |
| hidden_states = hidden_states + self.feed_forward(hidden_states) | |
| hidden_states = self.final_layer_norm(hidden_states) | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (attn_weights,) | |
| return outputs | |
| # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayerStableLayerNorm with Wav2Vec2->Hubert | |
| class HubertEncoderLayerStableLayerNorm(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.attention = HubertAttention( | |
| embed_dim=config.hidden_size, | |
| num_heads=config.num_attention_heads, | |
| dropout=config.attention_dropout, | |
| is_decoder=False, | |
| ) | |
| self.dropout = nn.Dropout(config.hidden_dropout) | |
| self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.feed_forward = HubertFeedForward(config) | |
| self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| def forward(self, hidden_states, attention_mask=None, output_attentions=False): | |
| attn_residual = hidden_states | |
| hidden_states = self.layer_norm(hidden_states) | |
| hidden_states, attn_weights, _ = self.attention( | |
| hidden_states, attention_mask=attention_mask, output_attentions=output_attentions | |
| ) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = attn_residual + hidden_states | |
| hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (attn_weights,) | |
| return outputs | |
| # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Encoder with Wav2Vec2->Hubert | |
| class HubertEncoder(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.pos_conv_embed = HubertPositionalConvEmbedding(config) | |
| self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout) | |
| self.layers = nn.ModuleList([HubertEncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| output_attentions=False, | |
| output_hidden_states=False, | |
| return_dict=True, | |
| ): | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attentions = () if output_attentions else None | |
| if attention_mask is not None: | |
| # make sure padded tokens output 0 | |
| hidden_states[~attention_mask] = 0.0 | |
| # extend attention_mask | |
| attention_mask = (1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)) * -10000.0 | |
| attention_mask = attention_mask.expand( | |
| attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] | |
| ) | |
| position_embeddings = self.pos_conv_embed(hidden_states) | |
| hidden_states = hidden_states + position_embeddings | |
| hidden_states = self.layer_norm(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() | |
| for layer in self.layers: | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
| dropout_probability = np.random.uniform(0, 1) | |
| skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False | |
| if not skip_the_layer or deepspeed_zero3_is_enabled: | |
| # under deepspeed zero3 all gpus must run in sync | |
| if getattr(self.config, "gradient_checkpointing", False) and self.training: | |
| # create gradient checkpointing function | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs, output_attentions) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(layer), | |
| hidden_states, | |
| attention_mask, | |
| ) | |
| else: | |
| layer_outputs = layer( | |
| hidden_states, attention_mask=attention_mask, output_attentions=output_attentions | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if skip_the_layer: | |
| layer_outputs = (None, None) | |
| if output_attentions: | |
| all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attentions, | |
| ) | |
| # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderStableLayerNorm with Wav2Vec2->Hubert | |
| class HubertEncoderStableLayerNorm(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.pos_conv_embed = HubertPositionalConvEmbedding(config) | |
| self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout) | |
| self.layers = nn.ModuleList( | |
| [HubertEncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)] | |
| ) | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| output_attentions=False, | |
| output_hidden_states=False, | |
| return_dict=True, | |
| ): | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attentions = () if output_attentions else None | |
| if attention_mask is not None: | |
| # make sure padded tokens are not attended to | |
| hidden_states[~attention_mask] = 0 | |
| # extend attention_mask | |
| attention_mask = (1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)) * -10000.0 | |
| attention_mask = attention_mask.expand( | |
| attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] | |
| ) | |
| position_embeddings = self.pos_conv_embed(hidden_states) | |
| hidden_states = hidden_states + position_embeddings | |
| hidden_states = self.dropout(hidden_states) | |
| deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() | |
| for layer in self.layers: | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
| dropout_probability = np.random.uniform(0, 1) | |
| skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False | |
| if not skip_the_layer or deepspeed_zero3_is_enabled: | |
| # under deepspeed zero3 all gpus must run in sync | |
| # XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication | |
| if getattr(self.config, "gradient_checkpointing", False) and self.training: | |
| # create gradient checkpointing function | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs, output_attentions) | |
| return custom_forward | |
| layer_outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(layer), | |
| hidden_states, | |
| attention_mask, | |
| ) | |
| else: | |
| layer_outputs = layer( | |
| hidden_states, attention_mask=attention_mask, output_attentions=output_attentions | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if skip_the_layer: | |
| layer_outputs = (None, None) | |
| if output_attentions: | |
| all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
| hidden_states = self.layer_norm(hidden_states) | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attentions, | |
| ) | |
| class HubertPreTrainedModel(PreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = HubertConfig | |
| base_model_prefix = "hubert" | |
| _keys_to_ignore_on_load_missing = [r"position_ids"] | |
| def _init_weights(self, module): | |
| """Initialize the weights""" | |
| if isinstance(module, nn.Linear): | |
| # Slightly different from the TF version which uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| elif isinstance(module, nn.Conv1d): | |
| if is_deepspeed_zero3_enabled(): | |
| import deepspeed | |
| if hasattr(module, "weight_v") and hasattr(module, "weight_g"): | |
| with deepspeed.zero.GatheredParameters([module.weight_v, module.weight_g], modifier_rank=0): | |
| nn.init.kaiming_normal_(module.weight.data) | |
| else: | |
| with deepspeed.zero.GatheredParameters(module.weight, modifier_rank=0): | |
| nn.init.kaiming_normal_(module.weight.data) | |
| else: | |
| nn.init.kaiming_normal_(module.weight.data) | |
| if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None: | |
| module.bias.data.zero_() | |
| def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): | |
| """ | |
| Computes the output length of the convolutional layers | |
| """ | |
| def _conv_out_length(input_length, kernel_size, stride): | |
| # 1D convolutional layer output length formula taken | |
| # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html | |
| return (input_length - kernel_size) // stride + 1 | |
| for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): | |
| input_lengths = _conv_out_length(input_lengths, kernel_size, stride) | |
| return input_lengths | |
| HUBERT_START_DOCSTRING = r""" | |
| Hubert was proposed in `HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units | |
| <https://arxiv.org/abs/2106.07447>`__ by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, | |
| Ruslan Salakhutdinov, Abdelrahman Mohamed. | |
| This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic | |
| methods the library implements for all its model (such as downloading or saving etc.). | |
| This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. Use | |
| it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
| behavior. | |
| Parameters: | |
| config (:class:`~transformers.HubertConfig`): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model | |
| weights. | |
| """ | |
| HUBERT_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_values (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`): | |
| Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file | |
| into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install | |
| soundfile`). To prepare the array into `input_values`, the :class:`~transformers.Wav2Vec2Processor` should | |
| be used for padding and conversion into a tensor of type `torch.FloatTensor`. See | |
| :meth:`transformers.Wav2Vec2Processor.__call__` for details. | |
| attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Mask to avoid performing convolution and attention on padding token indices. Mask values selected in ``[0, | |
| 1]``: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| `What are attention masks? <../glossary.html#attention-mask>`__ | |
| .. warning:: | |
| :obj:`attention_mask` should only be passed if the corresponding processor has | |
| ``config.return_attention_mask == True``. For all models whose processor has | |
| ``config.return_attention_mask == False``, such as `hubert-base | |
| <https://huggingface.co/facebook/hubert-base-ls960>`__, :obj:`attention_mask` should **not** be passed | |
| to avoid degraded performance when doing batched inference. For such models :obj:`input_values` should | |
| simply be padded with 0 and passed without :obj:`attention_mask`. Be aware that these models also yield | |
| slightly different results depending on whether :obj:`input_values` is padded or not. | |
| output_attentions (:obj:`bool`, `optional`): | |
| Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
| tensors for more detail. | |
| output_hidden_states (:obj:`bool`, `optional`): | |
| Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
| more detail. | |
| return_dict (:obj:`bool`, `optional`): | |
| Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
| """ | |
| class HubertModel(HubertPreTrainedModel): | |
| def __init__(self, config: HubertConfig): | |
| super().__init__(config) | |
| self.config = config | |
| self.feature_extractor = HubertFeatureExtractor(config) | |
| self.feature_projection = HubertFeatureProjection(config) | |
| self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) | |
| if config.do_stable_layer_norm: | |
| self.encoder = HubertEncoderStableLayerNorm(config) | |
| else: | |
| self.encoder = HubertEncoder(config) | |
| self.init_weights() | |
| # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states | |
| def _mask_hidden_states( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| mask_time_indices: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| ): | |
| """ | |
| Masks extracted features along time axis and/or along feature axis according to `SpecAugment | |
| <https://arxiv.org/abs/1904.08779>`__ . | |
| """ | |
| # `config.apply_spec_augment` can set masking to False | |
| if not getattr(self.config, "apply_spec_augment", True): | |
| return hidden_states | |
| # generate indices & apply SpecAugment along time axis | |
| batch_size, sequence_length, hidden_size = hidden_states.size() | |
| if mask_time_indices is not None: | |
| # apply SpecAugment along time axis with given mask_time_indices | |
| hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) | |
| elif self.config.mask_time_prob > 0 and self.training: | |
| mask_time_indices = _compute_mask_indices( | |
| (batch_size, sequence_length), | |
| mask_prob=self.config.mask_time_prob, | |
| mask_length=self.config.mask_time_length, | |
| device=hidden_states.device, | |
| attention_mask=attention_mask, | |
| min_masks=2, | |
| ) | |
| hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) | |
| if self.config.mask_feature_prob > 0 and self.training: | |
| # generate indices & apply SpecAugment along feature axis | |
| mask_feature_indices = _compute_mask_indices( | |
| (batch_size, hidden_size), | |
| mask_prob=self.config.mask_feature_prob, | |
| mask_length=self.config.mask_feature_length, | |
| device=hidden_states.device, | |
| attention_mask=attention_mask, | |
| ) | |
| hidden_states[mask_feature_indices[:, None].expand(-1, sequence_length, -1)] = 0 | |
| return hidden_states | |
| def forward( | |
| self, | |
| input_values, | |
| attention_mask=None, | |
| mask_time_indices=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| """ | |
| Returns: | |
| Example:: | |
| >>> from transformers import Wav2Vec2Processor, HubertModel | |
| >>> from datasets import load_dataset | |
| >>> import soundfile as sf | |
| >>> processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft") | |
| >>> model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft") | |
| >>> def map_to_array(batch): | |
| ... speech, _ = sf.read(batch["file"]) | |
| ... batch["speech"] = speech | |
| ... return batch | |
| >>> ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") | |
| >>> ds = ds.map(map_to_array) | |
| >>> input_values = processor(ds["speech"][0], return_tensors="pt").input_values # Batch size 1 | |
| >>> hidden_states = model(input_values).last_hidden_state | |
| """ | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| extract_features = self.feature_extractor(input_values) | |
| extract_features = extract_features.transpose(1, 2) | |
| if attention_mask is not None: | |
| # compute real output lengths according to convolution formula | |
| output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) | |
| attention_mask = torch.zeros( | |
| extract_features.shape[:2], dtype=extract_features.dtype, device=extract_features.device | |
| ) | |
| # these two operations makes sure that all values | |
| # before the output lengths indices are attended to | |
| attention_mask[ | |
| (torch.arange(attention_mask.shape[0], device=extract_features.device), output_lengths - 1) | |
| ] = 1 | |
| attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() | |
| hidden_states = self.feature_projection(extract_features) | |
| hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices) | |
| encoder_outputs = self.encoder( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = encoder_outputs[0] | |
| if not return_dict: | |
| return (hidden_states,) + encoder_outputs[1:] | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| ) | |
| class HubertForCTC(HubertPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.hubert = HubertModel(config) | |
| self.dropout = nn.Dropout(config.final_dropout) | |
| self.lm_head = nn.Linear(config.hidden_size, config.vocab_size) | |
| self.init_weights() | |
| def freeze_feature_extractor(self): | |
| """ | |
| Calling this function will disable the gradient computation for the feature extractor so that its parameter | |
| will not be updated during training. | |
| """ | |
| self.hubert.feature_extractor._freeze_parameters() | |
| def forward( | |
| self, | |
| input_values, | |
| attention_mask=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| labels=None, | |
| ): | |
| r""" | |
| labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_length)`, `optional`): | |
| Labels for connectionist temporal classification. Note that ``target_length`` has to be smaller or equal to | |
| the sequence length of the output logits. Indices are selected in ``[-100, 0, ..., config.vocab_size - | |
| 1]``. All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., | |
| config.vocab_size - 1]``. | |
| Returns: | |
| Example:: | |
| >>> import torch | |
| >>> from transformers import Wav2Vec2Processor, HubertForCTC | |
| >>> from datasets import load_dataset | |
| >>> import soundfile as sf | |
| >>> processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft") | |
| >>> model = HubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft") | |
| >>> def map_to_array(batch): | |
| ... speech, _ = sf.read(batch["file"]) | |
| ... batch["speech"] = speech | |
| ... return batch | |
| >>> ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") | |
| >>> ds = ds.map(map_to_array) | |
| >>> input_values = processor(ds["speech"][0], return_tensors="pt").input_values # Batch size 1 | |
| >>> logits = model(input_values).logits | |
| >>> predicted_ids = torch.argmax(logits, dim=-1) | |
| >>> transcription = processor.decode(predicted_ids[0]) | |
| >>> # compute loss | |
| >>> target_transcription = "A MAN SAID TO THE UNIVERSE SIR I EXIST" | |
| >>> # wrap processor as target processor to encode labels | |
| >>> with processor.as_target_processor(): | |
| ... labels = processor(target_transcription, return_tensors="pt").input_ids | |
| >>> loss = model(input_values, labels=labels).loss | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.hubert( | |
| input_values, | |
| attention_mask=attention_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = outputs[0] | |
| hidden_states = self.dropout(hidden_states) | |
| logits = self.lm_head(hidden_states) | |
| loss = None | |
| if labels is not None: | |
| if labels.max() >= self.config.vocab_size: | |
| raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") | |
| # retrieve loss input_lengths from attention_mask | |
| attention_mask = ( | |
| attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) | |
| ) | |
| input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) | |
| # assuming that padded tokens are filled with -100 | |
| # when not being attended to | |
| labels_mask = labels >= 0 | |
| target_lengths = labels_mask.sum(-1) | |
| flattened_targets = labels.masked_select(labels_mask) | |
| # ctc_loss doesn't support fp16 | |
| log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) | |
| with torch.backends.cudnn.flags(enabled=False): | |
| loss = nn.functional.ctc_loss( | |
| log_probs, | |
| flattened_targets, | |
| input_lengths, | |
| target_lengths, | |
| blank=self.config.pad_token_id, | |
| reduction=self.config.ctc_loss_reduction, | |
| zero_infinity=self.config.ctc_zero_infinity, | |
| ) | |
| if not return_dict: | |
| output = (logits,) + outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return CausalLMOutput( | |
| loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions | |
| ) | |