Spaces:
Sleeping
Sleeping
| # coding=utf-8 | |
| # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ TF 2.0 OpenAI GPT-2 model. """ | |
| from dataclasses import dataclass | |
| from typing import List, Optional, Tuple | |
| import tensorflow as tf | |
| from ...activations_tf import get_tf_activation | |
| from ...file_utils import ( | |
| ModelOutput, | |
| add_code_sample_docstrings, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| replace_return_docstrings, | |
| ) | |
| from ...modeling_tf_outputs import ( | |
| TFBaseModelOutputWithPast, | |
| TFCausalLMOutputWithPast, | |
| TFSequenceClassifierOutputWithPast, | |
| ) | |
| from ...modeling_tf_utils import ( | |
| TFCausalLanguageModelingLoss, | |
| TFConv1D, | |
| TFPreTrainedModel, | |
| TFSequenceClassificationLoss, | |
| TFSequenceSummary, | |
| TFSharedEmbeddings, | |
| get_initializer, | |
| input_processing, | |
| keras_serializable, | |
| shape_list, | |
| ) | |
| from ...utils import logging | |
| from .configuration_gpt2 import GPT2Config | |
| logger = logging.get_logger(__name__) | |
| _CHECKPOINT_FOR_DOC = "gpt2" | |
| _CONFIG_FOR_DOC = "GPT2Config" | |
| _TOKENIZER_FOR_DOC = "GPT2Tokenizer" | |
| TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "gpt2", | |
| "gpt2-medium", | |
| "gpt2-large", | |
| "gpt2-xl", | |
| "distilgpt2", | |
| # See all GPT-2 models at https://huggingface.co/models?filter=gpt2 | |
| ] | |
| class TFAttention(tf.keras.layers.Layer): | |
| def __init__(self, nx, n_ctx, config, scale=False, **kwargs): | |
| super().__init__(**kwargs) | |
| n_state = nx # in Attention: n_state=768 (nx=n_embd) | |
| # [switch nx => n_state from Block to Attention to keep identical to TF implementation] | |
| assert n_state % config.n_head == 0 | |
| self.n_ctx = n_ctx | |
| self.n_head = config.n_head | |
| self.split_size = n_state | |
| self.scale = scale | |
| self.output_attentions = config.output_attentions | |
| self.c_attn = TFConv1D(n_state * 3, nx, initializer_range=config.initializer_range, name="c_attn") | |
| self.c_proj = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_proj") | |
| self.attn_dropout = tf.keras.layers.Dropout(config.attn_pdrop) | |
| self.resid_dropout = tf.keras.layers.Dropout(config.resid_pdrop) | |
| self.pruned_heads = set() | |
| def prune_heads(self, heads): | |
| pass | |
| def causal_attention_mask(nd, ns, dtype): | |
| """ | |
| 1's in the lower triangle, counting from the lower right corner. Same as tf.matrix_band_part(tf.ones([nd, ns]), | |
| -1, ns-nd), but doesn't produce garbage on TPUs. | |
| """ | |
| i = tf.range(nd)[:, None] | |
| j = tf.range(ns) | |
| m = i >= j - ns + nd | |
| return tf.cast(m, dtype) | |
| def _attn(self, q, k, v, attention_mask, head_mask, output_attentions, training=False): | |
| # q, k, v have shape [batch, heads, sequence, features] | |
| w = tf.matmul(q, k, transpose_b=True) | |
| if self.scale: | |
| dk = tf.cast(shape_list(k)[-1], dtype=w.dtype) # scale attention_scores | |
| w = w / tf.math.sqrt(dk) | |
| # w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst. | |
| _, _, nd, ns = shape_list(w) | |
| b = self.causal_attention_mask(nd, ns, dtype=w.dtype) | |
| b = tf.reshape(b, [1, 1, nd, ns]) | |
| w = w * b - 1e4 * (1 - b) | |
| if attention_mask is not None: | |
| # Apply the attention mask | |
| attention_mask = tf.cast(attention_mask, dtype=w.dtype) | |
| w = w + attention_mask | |
| w = tf.nn.softmax(w, axis=-1) | |
| w = self.attn_dropout(w, training=training) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| w = w * head_mask | |
| outputs = [tf.matmul(w, v)] | |
| if output_attentions: | |
| outputs.append(w) | |
| return outputs | |
| def merge_heads(self, x): | |
| x = tf.transpose(x, [0, 2, 1, 3]) | |
| x_shape = shape_list(x) | |
| new_x_shape = x_shape[:-2] + [x_shape[-2] * x_shape[-1]] | |
| return tf.reshape(x, new_x_shape) | |
| def split_heads(self, x): | |
| x_shape = shape_list(x) | |
| new_x_shape = x_shape[:-1] + [self.n_head, x_shape[-1] // self.n_head] | |
| x = tf.reshape(x, new_x_shape) | |
| return tf.transpose(x, (0, 2, 1, 3)) # (batch, head, seq_length, head_features) | |
| def call(self, x, layer_past, attention_mask, head_mask, use_cache, output_attentions, training=False): | |
| x = self.c_attn(x) | |
| query, key, value = tf.split(x, 3, axis=2) | |
| query = self.split_heads(query) | |
| key = self.split_heads(key) | |
| value = self.split_heads(value) | |
| if layer_past is not None: | |
| past_key, past_value = tf.unstack(layer_past, axis=0) | |
| key = tf.concat([past_key, key], axis=-2) | |
| value = tf.concat([past_value, value], axis=-2) | |
| # to cope with keras serialization | |
| if use_cache: | |
| present = tf.stack([key, value], axis=0) | |
| else: | |
| present = (None,) | |
| attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions, training=training) | |
| a = attn_outputs[0] | |
| a = self.merge_heads(a) | |
| a = self.c_proj(a) | |
| a = self.resid_dropout(a, training=training) | |
| outputs = [a, present] + attn_outputs[1:] | |
| return outputs # a, present, (attentions) | |
| class TFMLP(tf.keras.layers.Layer): | |
| def __init__(self, n_state, config, **kwargs): | |
| super().__init__(**kwargs) | |
| nx = config.n_embd | |
| self.c_fc = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_fc") | |
| self.c_proj = TFConv1D(nx, n_state, initializer_range=config.initializer_range, name="c_proj") | |
| self.act = get_tf_activation("gelu") | |
| self.dropout = tf.keras.layers.Dropout(config.resid_pdrop) | |
| def call(self, x, training=False): | |
| h = self.act(self.c_fc(x)) | |
| h2 = self.c_proj(h) | |
| h2 = self.dropout(h2, training=training) | |
| return h2 | |
| class TFBlock(tf.keras.layers.Layer): | |
| def __init__(self, n_ctx, config, scale=False, **kwargs): | |
| super().__init__(**kwargs) | |
| nx = config.n_embd | |
| inner_dim = config.n_inner if config.n_inner is not None else 4 * nx | |
| self.ln_1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_1") | |
| self.attn = TFAttention(nx, n_ctx, config, scale, name="attn") | |
| self.ln_2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_2") | |
| self.mlp = TFMLP(inner_dim, config, name="mlp") | |
| def call(self, x, layer_past, attention_mask, head_mask, use_cache, output_attentions, training=False): | |
| a = self.ln_1(x) | |
| output_attn = self.attn( | |
| a, layer_past, attention_mask, head_mask, use_cache, output_attentions, training=training | |
| ) | |
| a = output_attn[0] # output_attn: a, present, (attentions) | |
| x = x + a | |
| m = self.ln_2(x) | |
| m = self.mlp(m, training=training) | |
| x = x + m | |
| outputs = [x] + output_attn[1:] | |
| return outputs # x, present, (attentions) | |
| class TFGPT2MainLayer(tf.keras.layers.Layer): | |
| config_class = GPT2Config | |
| def __init__(self, config, *inputs, **kwargs): | |
| super().__init__(*inputs, **kwargs) | |
| self.config = config | |
| self.output_attentions = config.output_attentions | |
| self.output_hidden_states = config.output_hidden_states | |
| self.use_cache = config.use_cache | |
| self.return_dict = config.use_return_dict | |
| self.num_hidden_layers = config.n_layer | |
| self.vocab_size = config.vocab_size | |
| self.n_embd = config.n_embd | |
| self.n_positions = config.n_positions | |
| self.initializer_range = config.initializer_range | |
| self.wte = TFSharedEmbeddings( | |
| config.vocab_size, config.hidden_size, initializer_range=config.initializer_range, name="wte" | |
| ) | |
| self.drop = tf.keras.layers.Dropout(config.embd_pdrop) | |
| self.h = [TFBlock(config.n_ctx, config, scale=True, name=f"h_._{i}") for i in range(config.n_layer)] | |
| self.ln_f = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_f") | |
| def build(self, input_shape): | |
| with tf.name_scope("wpe"): | |
| self.wpe = self.add_weight( | |
| name="embeddings", | |
| shape=[self.n_positions, self.n_embd], | |
| initializer=get_initializer(self.initializer_range), | |
| ) | |
| super().build(input_shape) | |
| def get_input_embeddings(self): | |
| return self.wte | |
| def set_input_embeddings(self, value): | |
| self.wte.weight = value | |
| self.wte.vocab_size = shape_list(value)[0] | |
| def _prune_heads(self, heads_to_prune): | |
| """ | |
| Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
| """ | |
| raise NotImplementedError | |
| def call( | |
| self, | |
| input_ids=None, | |
| past=None, | |
| attention_mask=None, | |
| token_type_ids=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| use_cache=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| training=False, | |
| **kwargs, | |
| ): | |
| inputs = input_processing( | |
| func=self.call, | |
| config=self.config, | |
| input_ids=input_ids, | |
| past=past, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| training=training, | |
| kwargs_call=kwargs, | |
| ) | |
| if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: | |
| raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
| elif inputs["input_ids"] is not None: | |
| input_shape = shape_list(inputs["input_ids"]) | |
| inputs["input_ids"] = tf.reshape(inputs["input_ids"], [-1, input_shape[-1]]) | |
| elif inputs["inputs_embeds"] is not None: | |
| input_shape = shape_list(inputs["inputs_embeds"])[:-1] | |
| else: | |
| raise ValueError("You have to specify either input_ids or inputs_embeds") | |
| if inputs["past"] is None: | |
| past_length = 0 | |
| inputs["past"] = [None] * len(self.h) | |
| else: | |
| past_length = shape_list(inputs["past"][0][0])[-2] | |
| if inputs["position_ids"] is None: | |
| inputs["position_ids"] = tf.expand_dims(tf.range(past_length, input_shape[-1] + past_length), axis=0) | |
| if inputs["attention_mask"] is not None: | |
| # We create a 3D attention mask from a 2D tensor mask. | |
| # Sizes are [batch_size, 1, 1, to_seq_length] | |
| # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
| # this attention mask is more simple than the triangular masking of causal attention | |
| # used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
| attention_mask_shape = shape_list(inputs["attention_mask"]) | |
| inputs["attention_mask"] = tf.reshape( | |
| inputs["attention_mask"], (attention_mask_shape[0], 1, 1, attention_mask_shape[1]) | |
| ) | |
| # Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
| # masked positions, this operation will create a tensor which is 0.0 for | |
| # positions we want to attend and -10000.0 for masked positions. | |
| # Since we are adding it to the raw scores before the softmax, this is | |
| # effectively the same as removing these entirely. | |
| one_cst = tf.constant(1.0) | |
| inputs["attention_mask"] = tf.cast(inputs["attention_mask"], dtype=one_cst.dtype) | |
| inputs["attention_mask"] = tf.multiply( | |
| tf.subtract(one_cst, inputs["attention_mask"]), tf.constant(-10000.0) | |
| ) | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape bsz x n_heads x N x N | |
| # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
| # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
| if inputs["head_mask"] is not None: | |
| raise NotImplementedError | |
| else: | |
| inputs["head_mask"] = [None] * self.num_hidden_layers | |
| # head_mask = tf.constant([0] * self.num_hidden_layers) | |
| inputs["position_ids"] = tf.reshape(inputs["position_ids"], [-1, shape_list(inputs["position_ids"])[-1]]) | |
| if inputs["inputs_embeds"] is None: | |
| inputs["inputs_embeds"] = self.wte(inputs["input_ids"], mode="embedding") | |
| position_embeds = tf.gather(self.wpe, inputs["position_ids"]) | |
| if inputs["token_type_ids"] is not None: | |
| inputs["token_type_ids"] = tf.reshape( | |
| inputs["token_type_ids"], [-1, shape_list(inputs["token_type_ids"])[-1]] | |
| ) | |
| token_type_embeds = self.wte(inputs["token_type_ids"], mode="embedding") | |
| else: | |
| token_type_embeds = tf.constant(0.0) | |
| position_embeds = tf.cast(position_embeds, dtype=inputs["inputs_embeds"].dtype) | |
| token_type_embeds = tf.cast(token_type_embeds, dtype=inputs["inputs_embeds"].dtype) | |
| hidden_states = inputs["inputs_embeds"] + position_embeds + token_type_embeds | |
| hidden_states = self.drop(hidden_states, training=inputs["training"]) | |
| output_shape = input_shape + [shape_list(hidden_states)[-1]] | |
| presents = () if inputs["use_cache"] else None | |
| all_attentions = () if inputs["output_attentions"] else None | |
| all_hidden_states = () if inputs["output_hidden_states"] else None | |
| for i, (block, layer_past) in enumerate(zip(self.h, inputs["past"])): | |
| if inputs["output_hidden_states"]: | |
| all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),) | |
| outputs = block( | |
| hidden_states, | |
| layer_past, | |
| inputs["attention_mask"], | |
| inputs["head_mask"][i], | |
| inputs["use_cache"], | |
| inputs["output_attentions"], | |
| training=inputs["training"], | |
| ) | |
| hidden_states, present = outputs[:2] | |
| if inputs["use_cache"]: | |
| presents = presents + (present,) | |
| if inputs["output_attentions"]: | |
| all_attentions = all_attentions + (outputs[2],) | |
| hidden_states = self.ln_f(hidden_states) | |
| hidden_states = tf.reshape(hidden_states, output_shape) | |
| # Add last hidden state | |
| if inputs["output_hidden_states"]: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if inputs["output_attentions"]: | |
| # let the number of heads free (-1) so we can extract attention even after head pruning | |
| attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:] | |
| all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions) | |
| if not inputs["return_dict"]: | |
| return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None) | |
| return TFBaseModelOutputWithPast( | |
| last_hidden_state=hidden_states, | |
| past_key_values=presents, | |
| hidden_states=all_hidden_states, | |
| attentions=all_attentions, | |
| ) | |
| class TFGPT2PreTrainedModel(TFPreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = GPT2Config | |
| base_model_prefix = "transformer" | |
| # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model | |
| _keys_to_ignore_on_load_unexpected = [r"h.\d+.attn.bias"] | |
| def serving(self, inputs): | |
| output = self.call(inputs) | |
| return self.serving_output(output) | |
| class TFGPT2DoubleHeadsModelOutput(ModelOutput): | |
| """ | |
| Base class for outputs of models predicting if two sentences are consecutive or not. | |
| Args: | |
| logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, num_choices, sequence_length, config.vocab_size)`): | |
| Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
| mc_logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, num_choices)`): | |
| Prediction scores of the multiple choice classification head (scores for each choice before SoftMax). | |
| past_key_values (:obj:`List[tf.Tensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): | |
| List of :obj:`tf.Tensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size, | |
| num_heads, sequence_length, embed_size_per_head)`). | |
| Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see | |
| :obj:`past_key_values` input) to speed up sequential decoding. | |
| hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
| Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of | |
| shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
| Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
| attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
| Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, | |
| sequence_length)`. | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
| heads. | |
| """ | |
| logits: tf.Tensor = None | |
| mc_logits: tf.Tensor = None | |
| past_key_values: Optional[List[tf.Tensor]] = None | |
| hidden_states: Optional[Tuple[tf.Tensor]] = None | |
| attentions: Optional[Tuple[tf.Tensor]] = None | |
| GPT2_START_DOCSTRING = r""" | |
| This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the | |
| generic methods the library implements for all its model (such as downloading or saving, resizing the input | |
| embeddings, pruning heads etc.) | |
| This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use | |
| it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage | |
| and behavior. | |
| .. note:: | |
| TF 2.0 models accepts two formats as inputs: | |
| - having all inputs as keyword arguments (like PyTorch models), or | |
| - having all inputs as a list, tuple or dict in the first positional arguments. | |
| This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all | |
| the tensors in the first argument of the model call function: :obj:`model(inputs)`. | |
| If you choose this second option, there are three possibilities you can use to gather all the input Tensors in | |
| the first positional argument : | |
| - a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)` | |
| - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: | |
| :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` | |
| - a dictionary with one or several input Tensors associated to the input names given in the docstring: | |
| :obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})` | |
| Parameters: | |
| config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model | |
| weights. | |
| """ | |
| GPT2_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, input_ids_length)`): | |
| :obj:`input_ids_length` = ``sequence_length`` if ``past`` is ``None`` else ``past[0].shape[-2]`` | |
| (``sequence_length`` of input past key value states). Indices of input sequence tokens in the vocabulary. | |
| If :obj:`past` is used, only input IDs that do not have their past calculated should be passed as | |
| ``input_ids``. | |
| Indices can be obtained using :class:`~transformers.GPT2Tokenizer`. See | |
| :func:`transformers.PreTrainedTokenizer.__call__` and :func:`transformers.PreTrainedTokenizer.encode` for | |
| details. | |
| `What are input IDs? <../glossary.html#input-ids>`__ | |
| past (:obj:`List[tf.Tensor]` of length :obj:`config.n_layers`): | |
| Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see | |
| :obj:`past` output below). Can be used to speed up sequential decoding. The token ids which have their past | |
| given to this model should not be passed as input ids as they have already been computed. | |
| attention_mask (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| `What are attention masks? <../glossary.html#attention-mask>`__ | |
| token_type_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, | |
| 1]``: | |
| - 0 corresponds to a `sentence A` token, | |
| - 1 corresponds to a `sentence B` token. | |
| `What are token type IDs? <../glossary.html#token-type-ids>`__ | |
| position_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, | |
| config.max_position_embeddings - 1]``. | |
| `What are position IDs? <../glossary.html#position-ids>`__ | |
| head_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): | |
| Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| inputs_embeds (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
| Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
| This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
| vectors than the model's internal embedding lookup matrix. | |
| output_attentions (:obj:`bool`, `optional`): | |
| Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
| tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the | |
| config will be used instead. | |
| output_hidden_states (:obj:`bool`, `optional`): | |
| Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
| more detail. This argument can be used only in eager mode, in graph mode the value in the config will be | |
| used instead. | |
| return_dict (:obj:`bool`, `optional`): | |
| Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This | |
| argument can be used in eager mode, in graph mode the value will always be set to True. | |
| training (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| Whether or not to use the model in training mode (some modules like dropout modules have different | |
| behaviors between training and evaluation). | |
| """ | |
| class TFGPT2Model(TFGPT2PreTrainedModel): | |
| def __init__(self, config, *inputs, **kwargs): | |
| super().__init__(config, *inputs, **kwargs) | |
| self.transformer = TFGPT2MainLayer(config, name="transformer") | |
| def call( | |
| self, | |
| input_ids=None, | |
| past=None, | |
| attention_mask=None, | |
| token_type_ids=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| use_cache=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| training=False, | |
| **kwargs, | |
| ): | |
| inputs = input_processing( | |
| func=self.call, | |
| config=self.config, | |
| input_ids=input_ids, | |
| past=past, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| training=training, | |
| kwargs_call=kwargs, | |
| ) | |
| outputs = self.transformer( | |
| input_ids=inputs["input_ids"], | |
| past=inputs["past"], | |
| attention_mask=inputs["attention_mask"], | |
| token_type_ids=inputs["token_type_ids"], | |
| position_ids=inputs["position_ids"], | |
| head_mask=inputs["head_mask"], | |
| inputs_embeds=inputs["inputs_embeds"], | |
| use_cache=inputs["use_cache"], | |
| output_attentions=inputs["output_attentions"], | |
| output_hidden_states=inputs["output_hidden_states"], | |
| return_dict=inputs["return_dict"], | |
| training=inputs["training"], | |
| ) | |
| return outputs | |
| def serving_output(self, output): | |
| pkv = tf.convert_to_tensor(output.past_key_values) if self.config.use_cache else None | |
| hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None | |
| attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None | |
| return TFBaseModelOutputWithPast( | |
| last_hidden_state=output.last_hidden_state, past_key_values=pkv, hidden_states=hs, attentions=attns | |
| ) | |
| class TFGPT2LMHeadModel(TFGPT2PreTrainedModel, TFCausalLanguageModelingLoss): | |
| def __init__(self, config, *inputs, **kwargs): | |
| super().__init__(config, *inputs, **kwargs) | |
| self.transformer = TFGPT2MainLayer(config, name="transformer") | |
| def get_output_embeddings(self): | |
| return self.get_input_embeddings() | |
| def set_output_embeddings(self, value): | |
| self.set_input_embeddings(value) | |
| def prepare_inputs_for_generation(self, inputs, past, **kwargs): | |
| # only last token for inputs_ids if past is defined in kwargs | |
| if past: | |
| inputs = tf.expand_dims(inputs[:, -1], -1) | |
| return {"input_ids": inputs, "past": past, "use_cache": kwargs["use_cache"]} | |
| def call( | |
| self, | |
| input_ids=None, | |
| past=None, | |
| attention_mask=None, | |
| token_type_ids=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| use_cache=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| labels=None, | |
| training=False, | |
| **kwargs, | |
| ): | |
| r""" | |
| labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Labels for computing the cross entropy classification loss. Indices should be in ``[0, ..., | |
| config.vocab_size - 1]``. | |
| """ | |
| inputs = input_processing( | |
| func=self.call, | |
| config=self.config, | |
| input_ids=input_ids, | |
| past=past, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| labels=labels, | |
| training=training, | |
| kwargs_call=kwargs, | |
| ) | |
| transformer_outputs = self.transformer( | |
| input_ids=inputs["input_ids"], | |
| past=inputs["past"], | |
| attention_mask=inputs["attention_mask"], | |
| token_type_ids=inputs["token_type_ids"], | |
| position_ids=inputs["position_ids"], | |
| head_mask=inputs["head_mask"], | |
| inputs_embeds=inputs["inputs_embeds"], | |
| use_cache=inputs["use_cache"], | |
| output_attentions=inputs["output_attentions"], | |
| output_hidden_states=inputs["output_hidden_states"], | |
| return_dict=inputs["return_dict"], | |
| training=inputs["training"], | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| logits = self.transformer.wte(hidden_states, mode="linear") | |
| loss = None | |
| if inputs["labels"] is not None: | |
| # shift labels to the left and cut last logit token | |
| logits = logits[:, :-1] | |
| labels = inputs["labels"][:, 1:] | |
| loss = self.compute_loss(labels, logits) | |
| if not inputs["return_dict"]: | |
| output = (logits,) + transformer_outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return TFCausalLMOutputWithPast( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |
| def serving_output(self, output): | |
| pkv = tf.convert_to_tensor(output.past_key_values) if self.config.use_cache else None | |
| hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None | |
| attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None | |
| return TFCausalLMOutputWithPast(logits=output.logits, past_key_values=pkv, hidden_states=hs, attentions=attns) | |
| class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel): | |
| def __init__(self, config, *inputs, **kwargs): | |
| super().__init__(config, *inputs, **kwargs) | |
| config.num_labels = 1 | |
| self.transformer = TFGPT2MainLayer(config, name="transformer") | |
| self.multiple_choice_head = TFSequenceSummary( | |
| config, initializer_range=config.initializer_range, name="multiple_choice_head" | |
| ) | |
| def call( | |
| self, | |
| input_ids=None, | |
| past=None, | |
| attention_mask=None, | |
| token_type_ids=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| mc_token_ids=None, | |
| use_cache=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| training=False, | |
| **kwargs, | |
| ): | |
| r""" | |
| mc_token_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, num_choices)`, `optional`, default to index of the last token of the input): | |
| Index of the classification token in each input sequence. Selected in the range ``[0, input_ids.size(-1) - | |
| 1[``. | |
| Return: | |
| Examples:: | |
| >>> import tensorflow as tf | |
| >>> from transformers import GPT2Tokenizer, TFGPT2DoubleHeadsModel | |
| >>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
| >>> model = TFGPT2DoubleHeadsModel.from_pretrained('gpt2') | |
| >>> # Add a [CLS] to the vocabulary (we should train it also!) | |
| >>> num_added_tokens = tokenizer.add_special_tokens({'cls_token': '[CLS]'}) | |
| >>> embedding_layer = model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size | |
| >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] | |
| >>> encoded_choices = [tokenizer.encode(s) for s in choices] | |
| >>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices] | |
| >>> input_ids = tf.constant(encoded_choices)[None, :] # Batch size: 1, number of choices: 2 | |
| >>> mc_token_ids = tf.constant([cls_token_location]) # Batch size: 1 | |
| >>> outputs = model(input_ids, mc_token_ids=mc_token_ids) | |
| >>> lm_prediction_scores, mc_prediction_scores = outputs[:2] | |
| """ | |
| inputs = input_processing( | |
| func=self.call, | |
| config=self.config, | |
| input_ids=input_ids, | |
| past=past, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| mc_token_ids=mc_token_ids, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| training=training, | |
| kwargs_call=kwargs, | |
| ) | |
| if inputs["input_ids"] is not None: | |
| input_shapes = shape_list(inputs["input_ids"]) | |
| else: | |
| input_shapes = shape_list(inputs["inputs_embeds"])[:-1] | |
| seq_length = input_shapes[-1] | |
| flat_input_ids = tf.reshape(inputs["input_ids"], (-1, seq_length)) if inputs["input_ids"] is not None else None | |
| flat_attention_mask = ( | |
| tf.reshape(inputs["attention_mask"], (-1, seq_length)) if inputs["attention_mask"] is not None else None | |
| ) | |
| flat_token_type_ids = ( | |
| tf.reshape(inputs["token_type_ids"], (-1, seq_length)) if inputs["token_type_ids"] is not None else None | |
| ) | |
| flat_position_ids = ( | |
| tf.reshape(inputs["position_ids"], (-1, seq_length)) if inputs["position_ids"] is not None else None | |
| ) | |
| transformer_outputs = self.transformer( | |
| flat_input_ids, | |
| inputs["past"], | |
| flat_attention_mask, | |
| flat_token_type_ids, | |
| flat_position_ids, | |
| inputs["head_mask"], | |
| inputs["inputs_embeds"], | |
| inputs["use_cache"], | |
| inputs["output_attentions"], | |
| inputs["output_hidden_states"], | |
| return_dict=inputs["return_dict"], | |
| training=inputs["training"], | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| hidden_states = tf.reshape(hidden_states, input_shapes + shape_list(hidden_states)[-1:]) | |
| lm_logits = self.transformer.wte(hidden_states, mode="linear") | |
| mc_logits = self.multiple_choice_head(hidden_states, inputs["mc_token_ids"], training=inputs["training"]) | |
| mc_logits = tf.squeeze(mc_logits, axis=-1) | |
| if not inputs["return_dict"]: | |
| return (lm_logits, mc_logits) + transformer_outputs[1:] | |
| return TFGPT2DoubleHeadsModelOutput( | |
| logits=lm_logits, | |
| mc_logits=mc_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |
| def serving(self, inputs): | |
| output = self.call(inputs) | |
| return self.serving_output(output) | |
| def serving_output(self, output): | |
| pkv = tf.convert_to_tensor(output.past_key_values) if self.config.use_cache else None | |
| hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None | |
| attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None | |
| return TFGPT2DoubleHeadsModelOutput( | |
| logits=output.logits, | |
| mc_logits=output.mc_logits, | |
| past_key_values=pkv, | |
| hidden_states=hs, | |
| attentions=attns, | |
| ) | |
| class TFGPT2ForSequenceClassification(TFGPT2PreTrainedModel, TFSequenceClassificationLoss): | |
| def __init__(self, config, *inputs, **kwargs): | |
| super().__init__(config, *inputs, **kwargs) | |
| self.num_labels = config.num_labels | |
| self.score = tf.keras.layers.Dense( | |
| config.num_labels, | |
| kernel_initializer=get_initializer(config.initializer_range), | |
| name="score", | |
| use_bias=False, | |
| ) | |
| self.transformer = TFGPT2MainLayer(config, name="transformer") | |
| def call( | |
| self, | |
| input_ids=None, | |
| past=None, | |
| attention_mask=None, | |
| token_type_ids=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| use_cache=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| labels=None, | |
| training=False, | |
| **kwargs, | |
| ): | |
| r""" | |
| labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Labels for computing the cross entropy classification loss. Indices should be in ``[0, ..., | |
| config.vocab_size - 1]``. | |
| """ | |
| inputs = input_processing( | |
| func=self.call, | |
| config=self.config, | |
| input_ids=input_ids, | |
| past=past, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| labels=labels, | |
| training=training, | |
| kwargs_call=kwargs, | |
| ) | |
| transformer_outputs = self.transformer( | |
| input_ids=inputs["input_ids"], | |
| past=inputs["past"], | |
| attention_mask=inputs["attention_mask"], | |
| token_type_ids=inputs["token_type_ids"], | |
| position_ids=inputs["position_ids"], | |
| head_mask=inputs["head_mask"], | |
| inputs_embeds=inputs["inputs_embeds"], | |
| use_cache=inputs["use_cache"], | |
| output_attentions=inputs["output_attentions"], | |
| output_hidden_states=inputs["output_hidden_states"], | |
| return_dict=inputs["return_dict"], | |
| training=inputs["training"], | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| logits = self.score(hidden_states) | |
| logits_shape = shape_list(logits) | |
| in_logits = None | |
| if self.config.pad_token_id is None: | |
| sequence_lengths = -1 | |
| else: | |
| if inputs["input_ids"] is not None: | |
| sequence_lengths = ( | |
| tf.reduce_sum( | |
| tf.cast( | |
| tf.math.not_equal(inputs["input_ids"], self.config.pad_token_id), | |
| dtype=inputs["input_ids"].dtype, | |
| ), | |
| -1, | |
| keepdims=False, | |
| ) | |
| - 1 | |
| ) | |
| in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1) | |
| else: | |
| sequence_lengths = -1 | |
| logger.warning( | |
| f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " | |
| f"unexpected if using padding tokens in conjunction with `inputs_embeds.`" | |
| ) | |
| loss = None | |
| if inputs["labels"] is not None: | |
| assert ( | |
| self.config.pad_token_id is not None or logits_shape[0] == 1 | |
| ), "Cannot handle batch sizes > 1 if no padding token is defined." | |
| if not tf.is_tensor(sequence_lengths): | |
| in_logits = logits[0 : logits_shape[0], sequence_lengths] | |
| loss = self.compute_loss(tf.reshape(inputs["labels"], [-1]), tf.reshape(in_logits, [-1, self.num_labels])) | |
| pooled_logits = in_logits if in_logits is not None else logits | |
| if not inputs["return_dict"]: | |
| output = (pooled_logits,) + transformer_outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return TFSequenceClassifierOutputWithPast( | |
| loss=loss, | |
| logits=pooled_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |
| def serving_output(self, output): | |
| pkv = tf.convert_to_tensor(output.past_key_values) if self.config.use_cache else None | |
| hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None | |
| attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None | |
| return TFSequenceClassifierOutputWithPast( | |
| logits=output.logits, past_key_values=pkv, hidden_states=hs, attentions=attns | |
| ) | |