Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Tokenization class for Funnel Transformer.""" | |
from typing import List, Optional | |
from ...utils import logging | |
from ..bert.tokenization_bert import BertTokenizer | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} | |
_model_names = [ | |
"small", | |
"small-base", | |
"medium", | |
"medium-base", | |
"intermediate", | |
"intermediate-base", | |
"large", | |
"large-base", | |
"xlarge", | |
"xlarge-base", | |
] | |
PRETRAINED_VOCAB_FILES_MAP = { | |
"vocab_file": { | |
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", | |
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", | |
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", | |
"funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt", | |
"funnel-transformer/intermediate": "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt", | |
"funnel-transformer/intermediate-base": "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt", | |
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", | |
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", | |
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", | |
"funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt", | |
} | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {f"funnel-transformer/{name}": 512 for name in _model_names} | |
PRETRAINED_INIT_CONFIGURATION = {f"funnel-transformer/{name}": {"do_lower_case": True} for name in _model_names} | |
class FunnelTokenizer(BertTokenizer): | |
r""" | |
Construct a Funnel Transformer tokenizer. | |
:class:`~transformers.FunnelTokenizer` is identical to :class:`~transformers.BertTokenizer` and runs end-to-end | |
tokenization: punctuation splitting and wordpiece. | |
Refer to superclass :class:`~transformers.BertTokenizer` for usage examples and documentation concerning | |
parameters. | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION | |
cls_token_type_id: int = 2 | |
def __init__( | |
self, | |
vocab_file, | |
do_lower_case=True, | |
do_basic_tokenize=True, | |
never_split=None, | |
unk_token="<unk>", | |
sep_token="<sep>", | |
pad_token="<pad>", | |
cls_token="<cls>", | |
mask_token="<mask>", | |
bos_token="<s>", | |
eos_token="</s>", | |
tokenize_chinese_chars=True, | |
strip_accents=None, | |
**kwargs | |
): | |
super().__init__( | |
vocab_file, | |
do_lower_case=do_lower_case, | |
do_basic_tokenize=do_basic_tokenize, | |
never_split=never_split, | |
unk_token=unk_token, | |
sep_token=sep_token, | |
pad_token=pad_token, | |
cls_token=cls_token, | |
mask_token=mask_token, | |
bos_token=bos_token, | |
eos_token=eos_token, | |
tokenize_chinese_chars=tokenize_chinese_chars, | |
strip_accents=strip_accents, | |
**kwargs, | |
) | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel | |
Transformer sequence pair mask has the following format: | |
:: | |
2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | |
| first sequence | second sequence | | |
If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s). | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of IDs. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
:obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given | |
sequence(s). | |
""" | |
sep = [self.sep_token_id] | |
cls = [self.cls_token_id] | |
if token_ids_1 is None: | |
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] | |
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] | |