Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2018 DPR Authors, The Hugging Face Team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" TensorFlow DPR model for Open Domain Question Answering.""" | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import tensorflow as tf | |
from ...file_utils import ( | |
ModelOutput, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
replace_return_docstrings, | |
) | |
from ...modeling_tf_outputs import TFBaseModelOutputWithPooling | |
from ...modeling_tf_utils import TFPreTrainedModel, get_initializer, input_processing, shape_list | |
from ...utils import logging | |
from ..bert.modeling_tf_bert import TFBertMainLayer | |
from .configuration_dpr import DPRConfig | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "DPRConfig" | |
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"facebook/dpr-ctx_encoder-single-nq-base", | |
"facebook/dpr-ctx_encoder-multiset-base", | |
] | |
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"facebook/dpr-question_encoder-single-nq-base", | |
"facebook/dpr-question_encoder-multiset-base", | |
] | |
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"facebook/dpr-reader-single-nq-base", | |
"facebook/dpr-reader-multiset-base", | |
] | |
########## | |
# Outputs | |
########## | |
class TFDPRContextEncoderOutput(ModelOutput): | |
r""" | |
Class for outputs of :class:`~transformers.TFDPRContextEncoder`. | |
Args: | |
pooler_output: (:obj:``tf.Tensor`` of shape ``(batch_size, embeddings_size)``): | |
The DPR encoder outputs the `pooler_output` that corresponds to the context representation. Last layer | |
hidden-state of the first token of the sequence (classification token) further processed by a Linear layer. | |
This output is to be used to embed contexts for nearest neighbors queries with questions embeddings. | |
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
pooler_output: tf.Tensor = None | |
hidden_states: Optional[Tuple[tf.Tensor]] = None | |
attentions: Optional[Tuple[tf.Tensor]] = None | |
class TFDPRQuestionEncoderOutput(ModelOutput): | |
""" | |
Class for outputs of :class:`~transformers.TFDPRQuestionEncoder`. | |
Args: | |
pooler_output: (:obj:``tf.Tensor`` of shape ``(batch_size, embeddings_size)``): | |
The DPR encoder outputs the `pooler_output` that corresponds to the question representation. Last layer | |
hidden-state of the first token of the sequence (classification token) further processed by a Linear layer. | |
This output is to be used to embed questions for nearest neighbors queries with context embeddings. | |
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
pooler_output: tf.Tensor = None | |
hidden_states: Optional[Tuple[tf.Tensor]] = None | |
attentions: Optional[Tuple[tf.Tensor]] = None | |
class TFDPRReaderOutput(ModelOutput): | |
""" | |
Class for outputs of :class:`~transformers.TFDPRReaderEncoder`. | |
Args: | |
start_logits: (:obj:``tf.Tensor`` of shape ``(n_passages, sequence_length)``): | |
Logits of the start index of the span for each passage. | |
end_logits: (:obj:``tf.Tensor`` of shape ``(n_passages, sequence_length)``): | |
Logits of the end index of the span for each passage. | |
relevance_logits: (:obj:`tf.Tensor`` of shape ``(n_passages, )``): | |
Outputs of the QA classifier of the DPRReader that corresponds to the scores of each passage to answer the | |
question, compared to all the other passages. | |
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of | |
shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
""" | |
start_logits: tf.Tensor = None | |
end_logits: tf.Tensor = None | |
relevance_logits: tf.Tensor = None | |
hidden_states: Optional[Tuple[tf.Tensor]] = None | |
attentions: Optional[Tuple[tf.Tensor]] = None | |
class TFDPREncoderLayer(tf.keras.layers.Layer): | |
base_model_prefix = "bert_model" | |
def __init__(self, config: DPRConfig, **kwargs): | |
super().__init__(**kwargs) | |
# resolve name conflict with TFBertMainLayer instead of TFBertModel | |
self.bert_model = TFBertMainLayer(config, name="bert_model") | |
self.config = config | |
assert self.config.hidden_size > 0, "Encoder hidden_size can't be zero" | |
self.projection_dim = config.projection_dim | |
if self.projection_dim > 0: | |
self.encode_proj = tf.keras.layers.Dense( | |
config.projection_dim, kernel_initializer=get_initializer(config.initializer_range), name="encode_proj" | |
) | |
def call( | |
self, | |
input_ids: tf.Tensor = None, | |
attention_mask: Optional[tf.Tensor] = None, | |
token_type_ids: Optional[tf.Tensor] = None, | |
inputs_embeds: Optional[tf.Tensor] = None, | |
output_attentions: bool = None, | |
output_hidden_states: bool = None, | |
return_dict: bool = None, | |
training: bool = False, | |
**kwargs, | |
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor, ...]]: | |
inputs = input_processing( | |
func=self.call, | |
config=self.config, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
training=training, | |
kwargs_call=kwargs, | |
) | |
outputs = self.bert_model( | |
input_ids=inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
token_type_ids=inputs["token_type_ids"], | |
inputs_embeds=inputs["inputs_embeds"], | |
output_attentions=inputs["output_attentions"], | |
output_hidden_states=inputs["output_hidden_states"], | |
return_dict=inputs["return_dict"], | |
training=inputs["training"], | |
) | |
sequence_output, pooled_output = outputs[:2] | |
pooled_output = sequence_output[:, 0, :] | |
if self.projection_dim > 0: | |
pooled_output = self.encode_proj(pooled_output) | |
if not inputs["return_dict"]: | |
return (sequence_output, pooled_output) + outputs[2:] | |
return TFBaseModelOutputWithPooling( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def embeddings_size(self) -> int: | |
if self.projection_dim > 0: | |
return self.projection_dim | |
return self.bert_model.config.hidden_size | |
class TFDPRSpanPredictorLayer(tf.keras.layers.Layer): | |
base_model_prefix = "encoder" | |
def __init__(self, config: DPRConfig, **kwargs): | |
super().__init__(**kwargs) | |
self.config = config | |
self.encoder = TFDPREncoderLayer(config, name="encoder") | |
self.qa_outputs = tf.keras.layers.Dense( | |
2, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" | |
) | |
self.qa_classifier = tf.keras.layers.Dense( | |
1, kernel_initializer=get_initializer(config.initializer_range), name="qa_classifier" | |
) | |
def call( | |
self, | |
input_ids: tf.Tensor = None, | |
attention_mask: Optional[tf.Tensor] = None, | |
inputs_embeds: Optional[tf.Tensor] = None, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = False, | |
training: bool = False, | |
**kwargs, | |
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]: | |
# notations: N - number of questions in a batch, M - number of passages per questions, L - sequence length | |
n_passages, sequence_length = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds)[:2] | |
# feed encoder | |
inputs = input_processing( | |
func=self.call, | |
config=self.config, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
training=training, | |
kwargs_call=kwargs, | |
) | |
outputs = self.encoder( | |
input_ids=inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
inputs_embeds=inputs["inputs_embeds"], | |
output_attentions=inputs["output_attentions"], | |
output_hidden_states=inputs["output_hidden_states"], | |
return_dict=inputs["return_dict"], | |
training=inputs["training"], | |
) | |
sequence_output = outputs[0] | |
# compute logits | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = tf.split(logits, 2, axis=-1) | |
start_logits = tf.squeeze(start_logits, axis=-1) | |
end_logits = tf.squeeze(end_logits, axis=-1) | |
relevance_logits = self.qa_classifier(sequence_output[:, 0, :]) | |
# resize | |
start_logits = tf.reshape(start_logits, [n_passages, sequence_length]) | |
end_logits = tf.reshape(end_logits, [n_passages, sequence_length]) | |
relevance_logits = tf.reshape(relevance_logits, [n_passages]) | |
if not inputs["return_dict"]: | |
return (start_logits, end_logits, relevance_logits) + outputs[2:] | |
return TFDPRReaderOutput( | |
start_logits=start_logits, | |
end_logits=end_logits, | |
relevance_logits=relevance_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class TFDPRSpanPredictor(TFPreTrainedModel): | |
base_model_prefix = "encoder" | |
def __init__(self, config: DPRConfig, **kwargs): | |
super().__init__(config, **kwargs) | |
self.encoder = TFDPRSpanPredictorLayer(config) | |
def call( | |
self, | |
input_ids: tf.Tensor = None, | |
attention_mask: Optional[tf.Tensor] = None, | |
token_type_ids: Optional[tf.Tensor] = None, | |
inputs_embeds: Optional[tf.Tensor] = None, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = False, | |
training: bool = False, | |
**kwargs, | |
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]: | |
inputs = input_processing( | |
func=self.call, | |
config=self.config, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
training=training, | |
kwargs_call=kwargs, | |
) | |
outputs = self.encoder( | |
input_ids=inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
inputs_embeds=inputs["inputs_embeds"], | |
output_attentions=inputs["output_attentions"], | |
output_hidden_states=inputs["output_hidden_states"], | |
return_dict=inputs["return_dict"], | |
training=inputs["training"], | |
) | |
return outputs | |
class TFDPREncoder(TFPreTrainedModel): | |
base_model_prefix = "encoder" | |
def __init__(self, config: DPRConfig, **kwargs): | |
super().__init__(config, **kwargs) | |
self.encoder = TFDPREncoderLayer(config) | |
def call( | |
self, | |
input_ids: tf.Tensor = None, | |
attention_mask: Optional[tf.Tensor] = None, | |
token_type_ids: Optional[tf.Tensor] = None, | |
inputs_embeds: Optional[tf.Tensor] = None, | |
output_attentions: bool = False, | |
output_hidden_states: bool = False, | |
return_dict: bool = False, | |
training: bool = False, | |
**kwargs, | |
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]: | |
inputs = input_processing( | |
func=self.call, | |
config=self.config, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
training=training, | |
kwargs_call=kwargs, | |
) | |
outputs = self.encoder( | |
input_ids=inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
inputs_embeds=inputs["inputs_embeds"], | |
output_attentions=inputs["output_attentions"], | |
output_hidden_states=inputs["output_hidden_states"], | |
return_dict=inputs["return_dict"], | |
training=inputs["training"], | |
) | |
return outputs | |
################## | |
# PreTrainedModel | |
################## | |
class TFDPRPretrainedContextEncoder(TFPreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = DPRConfig | |
base_model_prefix = "ctx_encoder" | |
class TFDPRPretrainedQuestionEncoder(TFPreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = DPRConfig | |
base_model_prefix = "question_encoder" | |
class TFDPRPretrainedReader(TFPreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = DPRConfig | |
base_model_prefix = "reader" | |
def serving(self, inputs): | |
output = self.call(inputs) | |
return self.serving_output(output) | |
############### | |
# Actual Models | |
############### | |
TF_DPR_START_DOCSTRING = r""" | |
This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the | |
generic methods the library implements for all its model (such as downloading or saving, resizing the input | |
embeddings, pruning heads etc.) | |
This model is also a Tensorflow `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ | |
subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to | |
general usage and behavior. | |
.. note:: | |
TF 2.0 models accepts two formats as inputs: | |
- having all inputs as keyword arguments (like PyTorch models), or | |
- having all inputs as a list, tuple or dict in the first positional arguments. | |
This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all | |
the tensors in the first argument of the model call function: :obj:`model(inputs)`. | |
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in | |
the first positional argument : | |
- a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)` | |
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: | |
:obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` | |
- a dictionary with one or several input Tensors associated to the input names given in the docstring: | |
:obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})` | |
Parameters: | |
config (:class:`~transformers.DPRConfig`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the :meth:`~transformers.TFPreTrainedModel.from_pretrained` method to load the | |
model weights. | |
""" | |
TF_DPR_ENCODERS_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. To match pretraining, DPR input sequence should be | |
formatted with [CLS] and [SEP] tokens as follows: | |
(a) For sequence pairs (for a pair title+text for example): | |
:: | |
tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] | |
token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 | |
(b) For single sequences (for a question for example): | |
:: | |
tokens: [CLS] the dog is hairy . [SEP] | |
token_type_ids: 0 0 0 0 0 0 0 | |
DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right | |
rather than the left. | |
Indices can be obtained using :class:`~transformers.DPRTokenizer`. See | |
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
attention_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
token_type_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, | |
1]``: | |
- 0 corresponds to a `sentence A` token, | |
- 1 corresponds to a `sentence B` token. | |
`What are token type IDs? <../glossary.html#token-type-ids>`_ | |
inputs_embeds (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
vectors than the model's internal embedding lookup matrix. | |
output_attentions (:obj:`bool`, `optional`): | |
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the | |
config will be used instead. | |
output_hidden_states (:obj:`bool`, `optional`): | |
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be | |
used instead. | |
return_dict (:obj:`bool`, `optional`): | |
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This | |
argument can be used in eager mode, in graph mode the value will always be set to True. | |
training (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not to use the model in training mode (some modules like dropout modules have different | |
behaviors between training and evaluation). | |
""" | |
TF_DPR_READER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids: (:obj:`Numpy array` or :obj:`tf.Tensor` of shapes :obj:`(n_passages, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. It has to be a sequence triplet with 1) the question | |
and 2) the passages titles and 3) the passages texts To match pretraining, DPR :obj:`input_ids` sequence | |
should be formatted with [CLS] and [SEP] with the format: | |
``[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>`` | |
DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right | |
rather than the left. | |
Indices can be obtained using :class:`~transformers.DPRReaderTokenizer`. See this class documentation for | |
more details. | |
attention_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(n_passages, sequence_length)`, `optional`): | |
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
inputs_embeds (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(n_passages, sequence_length, hidden_size)`, `optional`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
vectors than the model's internal embedding lookup matrix. | |
output_hidden_states (:obj:`bool`, `optional`): | |
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be | |
used instead. | |
return_dict (:obj:`bool`, `optional`): | |
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This | |
argument can be used in eager mode, in graph mode the value will always be set to True. | |
training (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not to use the model in training mode (some modules like dropout modules have different | |
behaviors between training and evaluation). | |
""" | |
class TFDPRContextEncoder(TFDPRPretrainedContextEncoder): | |
def __init__(self, config: DPRConfig, *args, **kwargs): | |
super().__init__(config, *args, **kwargs) | |
self.ctx_encoder = TFDPREncoderLayer(config, name="ctx_encoder") | |
def get_input_embeddings(self): | |
try: | |
return self.ctx_encoder.bert_model.get_input_embeddings() | |
except AttributeError: | |
self(self.dummy_inputs) | |
return self.ctx_encoder.bert_model.get_input_embeddings() | |
def call( | |
self, | |
input_ids=None, | |
attention_mask: Optional[tf.Tensor] = None, | |
token_type_ids: Optional[tf.Tensor] = None, | |
inputs_embeds: Optional[tf.Tensor] = None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
training: bool = False, | |
**kwargs, | |
) -> Union[TFDPRContextEncoderOutput, Tuple[tf.Tensor, ...]]: | |
r""" | |
Return: | |
Examples:: | |
>>> from transformers import TFDPRContextEncoder, DPRContextEncoderTokenizer | |
>>> tokenizer = DPRContextEncoderTokenizer.from_pretrained('facebook/dpr-ctx_encoder-single-nq-base') | |
>>> model = TFDPRContextEncoder.from_pretrained('facebook/dpr-ctx_encoder-single-nq-base', from_pt=True) | |
>>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors='tf')["input_ids"] | |
>>> embeddings = model(input_ids).pooler_output | |
""" | |
inputs = input_processing( | |
func=self.call, | |
config=self.config, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
training=training, | |
kwargs_call=kwargs, | |
) | |
if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif inputs["input_ids"] is not None: | |
input_shape = shape_list(inputs["input_ids"]) | |
elif inputs["inputs_embeds"] is not None: | |
input_shape = shape_list(inputs["inputs_embeds"])[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if inputs["attention_mask"] is None: | |
inputs["attention_mask"] = ( | |
tf.ones(input_shape, dtype=tf.dtypes.int32) | |
if inputs["input_ids"] is None | |
else (inputs["input_ids"] != self.config.pad_token_id) | |
) | |
if inputs["token_type_ids"] is None: | |
inputs["token_type_ids"] = tf.zeros(input_shape, dtype=tf.dtypes.int32) | |
outputs = self.ctx_encoder( | |
input_ids=inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
token_type_ids=inputs["token_type_ids"], | |
inputs_embeds=inputs["inputs_embeds"], | |
output_attentions=inputs["output_attentions"], | |
output_hidden_states=inputs["output_hidden_states"], | |
return_dict=inputs["return_dict"], | |
training=inputs["training"], | |
) | |
if not inputs["return_dict"]: | |
return outputs[1:] | |
return TFDPRContextEncoderOutput( | |
pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions | |
) | |
def serving_output(self, output): | |
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None | |
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None | |
return TFDPRContextEncoderOutput(pooler_output=output.pooler_output, hidden_states=hs, attentions=attns) | |
class TFDPRQuestionEncoder(TFDPRPretrainedQuestionEncoder): | |
def __init__(self, config: DPRConfig, *args, **kwargs): | |
super().__init__(config, *args, **kwargs) | |
self.question_encoder = TFDPREncoderLayer(config, name="question_encoder") | |
def get_input_embeddings(self): | |
try: | |
return self.question_encoder.bert_model.get_input_embeddings() | |
except AttributeError: | |
self(self.dummy_inputs) | |
return self.question_encoder.bert_model.get_input_embeddings() | |
def call( | |
self, | |
input_ids=None, | |
attention_mask: Optional[tf.Tensor] = None, | |
token_type_ids: Optional[tf.Tensor] = None, | |
inputs_embeds: Optional[tf.Tensor] = None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
training: bool = False, | |
**kwargs, | |
) -> Union[TFDPRQuestionEncoderOutput, Tuple[tf.Tensor, ...]]: | |
r""" | |
Return: | |
Examples:: | |
>>> from transformers import TFDPRQuestionEncoder, DPRQuestionEncoderTokenizer | |
>>> tokenizer = DPRQuestionEncoderTokenizer.from_pretrained('facebook/dpr-question_encoder-single-nq-base') | |
>>> model = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base', from_pt=True) | |
>>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors='tf')["input_ids"] | |
>>> embeddings = model(input_ids).pooler_output | |
""" | |
inputs = input_processing( | |
func=self.call, | |
config=self.config, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
training=training, | |
kwargs_call=kwargs, | |
) | |
if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif inputs["input_ids"] is not None: | |
input_shape = shape_list(inputs["input_ids"]) | |
elif inputs["inputs_embeds"] is not None: | |
input_shape = shape_list(inputs["inputs_embeds"])[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if inputs["attention_mask"] is None: | |
inputs["attention_mask"] = ( | |
tf.ones(input_shape, dtype=tf.dtypes.int32) | |
if inputs["input_ids"] is None | |
else (inputs["input_ids"] != self.config.pad_token_id) | |
) | |
if inputs["token_type_ids"] is None: | |
inputs["token_type_ids"] = tf.zeros(input_shape, dtype=tf.dtypes.int32) | |
outputs = self.question_encoder( | |
input_ids=inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
token_type_ids=inputs["token_type_ids"], | |
inputs_embeds=inputs["inputs_embeds"], | |
output_attentions=inputs["output_attentions"], | |
output_hidden_states=inputs["output_hidden_states"], | |
return_dict=inputs["return_dict"], | |
training=inputs["training"], | |
) | |
if not inputs["return_dict"]: | |
return outputs[1:] | |
return TFDPRQuestionEncoderOutput( | |
pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions | |
) | |
def serving_output(self, output): | |
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None | |
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None | |
return TFDPRQuestionEncoderOutput(pooler_output=output.pooler_output, hidden_states=hs, attentions=attns) | |
class TFDPRReader(TFDPRPretrainedReader): | |
def __init__(self, config: DPRConfig, *args, **kwargs): | |
super().__init__(config, *args, **kwargs) | |
self.span_predictor = TFDPRSpanPredictorLayer(config, name="span_predictor") | |
def get_input_embeddings(self): | |
try: | |
return self.span_predictor.encoder.bert_model.get_input_embeddings() | |
except AttributeError: | |
self(self.dummy_inputs) | |
return self.span_predictor.encoder.bert_model.get_input_embeddings() | |
def call( | |
self, | |
input_ids=None, | |
attention_mask: Optional[tf.Tensor] = None, | |
inputs_embeds: Optional[tf.Tensor] = None, | |
output_attentions: bool = None, | |
output_hidden_states: bool = None, | |
return_dict=None, | |
training: bool = False, | |
**kwargs, | |
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]: | |
r""" | |
Return: | |
Examples:: | |
>>> from transformers import TFDPRReader, DPRReaderTokenizer | |
>>> tokenizer = DPRReaderTokenizer.from_pretrained('facebook/dpr-reader-single-nq-base') | |
>>> model = TFDPRReader.from_pretrained('facebook/dpr-reader-single-nq-base', from_pt=True) | |
>>> encoded_inputs = tokenizer( | |
... questions=["What is love ?"], | |
... titles=["Haddaway"], | |
... texts=["'What Is Love' is a song recorded by the artist Haddaway"], | |
... return_tensors='tf' | |
... ) | |
>>> outputs = model(encoded_inputs) | |
>>> start_logits = outputs.start_logits | |
>>> end_logits = outputs.end_logits | |
>>> relevance_logits = outputs.relevance_logits | |
""" | |
inputs = input_processing( | |
func=self.call, | |
config=self.config, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
training=training, | |
kwargs_call=kwargs, | |
) | |
if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif inputs["input_ids"] is not None: | |
input_shape = shape_list(inputs["input_ids"]) | |
elif inputs["inputs_embeds"] is not None: | |
input_shape = shape_list(inputs["inputs_embeds"])[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if inputs["attention_mask"] is None: | |
inputs["attention_mask"] = tf.ones(input_shape, dtype=tf.dtypes.int32) | |
return self.span_predictor( | |
input_ids=inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
inputs_embeds=inputs["inputs_embeds"], | |
output_attentions=inputs["output_attentions"], | |
output_hidden_states=inputs["output_hidden_states"], | |
return_dict=inputs["return_dict"], | |
training=inputs["training"], | |
) | |
def serving_output(self, output): | |
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None | |
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None | |
return TFDPRReaderOutput( | |
start_logits=output.start_logits, | |
end_logits=output.end_logits, | |
relevance_logits=output.relevance_logits, | |
hidden_states=hs, | |
attentions=attns, | |
) | |