Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
PyTorch DistilBERT model adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM) and in | |
part from HuggingFace PyTorch version of Google AI Bert model (https://github.com/google-research/bert) | |
""" | |
import math | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import gelu | |
from ...deepspeed import is_deepspeed_zero3_enabled | |
from ...file_utils import ( | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
replace_return_docstrings, | |
) | |
from ...modeling_outputs import ( | |
BaseModelOutput, | |
MaskedLMOutput, | |
MultipleChoiceModelOutput, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from ...modeling_utils import ( | |
PreTrainedModel, | |
apply_chunking_to_forward, | |
find_pruneable_heads_and_indices, | |
prune_linear_layer, | |
) | |
from ...utils import logging | |
from .configuration_distilbert import DistilBertConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "distilbert-base-uncased" | |
_CONFIG_FOR_DOC = "DistilBertConfig" | |
_TOKENIZER_FOR_DOC = "DistilBertTokenizer" | |
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"distilbert-base-uncased", | |
"distilbert-base-uncased-distilled-squad", | |
"distilbert-base-cased", | |
"distilbert-base-cased-distilled-squad", | |
"distilbert-base-german-cased", | |
"distilbert-base-multilingual-cased", | |
"distilbert-base-uncased-finetuned-sst-2-english", | |
# See all DistilBERT models at https://huggingface.co/models?filter=distilbert | |
] | |
# UTILS AND BUILDING BLOCKS OF THE ARCHITECTURE # | |
def create_sinusoidal_embeddings(n_pos, dim, out): | |
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]) | |
out.requires_grad = False | |
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) | |
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2])) | |
out.detach_() | |
class Embeddings(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.dim, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.dim) | |
if config.sinusoidal_pos_embds: | |
if is_deepspeed_zero3_enabled(): | |
import deepspeed | |
with deepspeed.zero.GatheredParameters(self.position_embeddings.weight, modifier_rank=0): | |
if torch.distributed.get_rank() == 0: | |
create_sinusoidal_embeddings( | |
n_pos=config.max_position_embeddings, dim=config.dim, out=self.position_embeddings.weight | |
) | |
else: | |
create_sinusoidal_embeddings( | |
n_pos=config.max_position_embeddings, dim=config.dim, out=self.position_embeddings.weight | |
) | |
self.LayerNorm = nn.LayerNorm(config.dim, eps=1e-12) | |
self.dropout = nn.Dropout(config.dropout) | |
def forward(self, input_ids): | |
""" | |
Parameters: | |
input_ids: torch.tensor(bs, max_seq_length) The token ids to embed. | |
Returns: torch.tensor(bs, max_seq_length, dim) The embedded tokens (plus position embeddings, no token_type | |
embeddings) | |
""" | |
seq_length = input_ids.size(1) | |
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) # (max_seq_length) | |
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) # (bs, max_seq_length) | |
word_embeddings = self.word_embeddings(input_ids) # (bs, max_seq_length, dim) | |
position_embeddings = self.position_embeddings(position_ids) # (bs, max_seq_length, dim) | |
embeddings = word_embeddings + position_embeddings # (bs, max_seq_length, dim) | |
embeddings = self.LayerNorm(embeddings) # (bs, max_seq_length, dim) | |
embeddings = self.dropout(embeddings) # (bs, max_seq_length, dim) | |
return embeddings | |
class MultiHeadSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.n_heads = config.n_heads | |
self.dim = config.dim | |
self.dropout = nn.Dropout(p=config.attention_dropout) | |
assert self.dim % self.n_heads == 0 | |
self.q_lin = nn.Linear(in_features=config.dim, out_features=config.dim) | |
self.k_lin = nn.Linear(in_features=config.dim, out_features=config.dim) | |
self.v_lin = nn.Linear(in_features=config.dim, out_features=config.dim) | |
self.out_lin = nn.Linear(in_features=config.dim, out_features=config.dim) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
attention_head_size = self.dim // self.n_heads | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices(heads, self.n_heads, attention_head_size, self.pruned_heads) | |
# Prune linear layers | |
self.q_lin = prune_linear_layer(self.q_lin, index) | |
self.k_lin = prune_linear_layer(self.k_lin, index) | |
self.v_lin = prune_linear_layer(self.v_lin, index) | |
self.out_lin = prune_linear_layer(self.out_lin, index, dim=1) | |
# Update hyper params | |
self.n_heads = self.n_heads - len(heads) | |
self.dim = attention_head_size * self.n_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward(self, query, key, value, mask, head_mask=None, output_attentions=False): | |
""" | |
Parameters: | |
query: torch.tensor(bs, seq_length, dim) | |
key: torch.tensor(bs, seq_length, dim) | |
value: torch.tensor(bs, seq_length, dim) | |
mask: torch.tensor(bs, seq_length) | |
Returns: | |
weights: torch.tensor(bs, n_heads, seq_length, seq_length) Attention weights context: torch.tensor(bs, | |
seq_length, dim) Contextualized layer. Optional: only if `output_attentions=True` | |
""" | |
bs, q_length, dim = query.size() | |
k_length = key.size(1) | |
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured' | |
# assert key.size() == value.size() | |
dim_per_head = self.dim // self.n_heads | |
mask_reshp = (bs, 1, 1, k_length) | |
def shape(x): | |
"""separate heads""" | |
return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2) | |
def unshape(x): | |
"""group heads""" | |
return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head) | |
q = shape(self.q_lin(query)) # (bs, n_heads, q_length, dim_per_head) | |
k = shape(self.k_lin(key)) # (bs, n_heads, k_length, dim_per_head) | |
v = shape(self.v_lin(value)) # (bs, n_heads, k_length, dim_per_head) | |
q = q / math.sqrt(dim_per_head) # (bs, n_heads, q_length, dim_per_head) | |
scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, q_length, k_length) | |
mask = (mask == 0).view(mask_reshp).expand_as(scores) # (bs, n_heads, q_length, k_length) | |
scores.masked_fill_(mask, -float("inf")) # (bs, n_heads, q_length, k_length) | |
weights = nn.Softmax(dim=-1)(scores) # (bs, n_heads, q_length, k_length) | |
weights = self.dropout(weights) # (bs, n_heads, q_length, k_length) | |
# Mask heads if we want to | |
if head_mask is not None: | |
weights = weights * head_mask | |
context = torch.matmul(weights, v) # (bs, n_heads, q_length, dim_per_head) | |
context = unshape(context) # (bs, q_length, dim) | |
context = self.out_lin(context) # (bs, q_length, dim) | |
if output_attentions: | |
return (context, weights) | |
else: | |
return (context,) | |
class FFN(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dropout = nn.Dropout(p=config.dropout) | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.lin1 = nn.Linear(in_features=config.dim, out_features=config.hidden_dim) | |
self.lin2 = nn.Linear(in_features=config.hidden_dim, out_features=config.dim) | |
assert config.activation in ["relu", "gelu"], f"activation ({config.activation}) must be in ['relu', 'gelu']" | |
self.activation = gelu if config.activation == "gelu" else nn.ReLU() | |
def forward(self, input): | |
return apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, input) | |
def ff_chunk(self, input): | |
x = self.lin1(input) | |
x = self.activation(x) | |
x = self.lin2(x) | |
x = self.dropout(x) | |
return x | |
class TransformerBlock(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.dim % config.n_heads == 0 | |
self.attention = MultiHeadSelfAttention(config) | |
self.sa_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12) | |
self.ffn = FFN(config) | |
self.output_layer_norm = nn.LayerNorm(normalized_shape=config.dim, eps=1e-12) | |
def forward(self, x, attn_mask=None, head_mask=None, output_attentions=False): | |
""" | |
Parameters: | |
x: torch.tensor(bs, seq_length, dim) | |
attn_mask: torch.tensor(bs, seq_length) | |
Returns: | |
sa_weights: torch.tensor(bs, n_heads, seq_length, seq_length) The attention weights ffn_output: | |
torch.tensor(bs, seq_length, dim) The output of the transformer block contextualization. | |
""" | |
# Self-Attention | |
sa_output = self.attention( | |
query=x, | |
key=x, | |
value=x, | |
mask=attn_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
) | |
if output_attentions: | |
sa_output, sa_weights = sa_output # (bs, seq_length, dim), (bs, n_heads, seq_length, seq_length) | |
else: # To handle these `output_attentions` or `output_hidden_states` cases returning tuples | |
assert type(sa_output) == tuple | |
sa_output = sa_output[0] | |
sa_output = self.sa_layer_norm(sa_output + x) # (bs, seq_length, dim) | |
# Feed Forward Network | |
ffn_output = self.ffn(sa_output) # (bs, seq_length, dim) | |
ffn_output = self.output_layer_norm(ffn_output + sa_output) # (bs, seq_length, dim) | |
output = (ffn_output,) | |
if output_attentions: | |
output = (sa_weights,) + output | |
return output | |
class Transformer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.n_layers = config.n_layers | |
self.layer = nn.ModuleList([TransformerBlock(config) for _ in range(config.n_layers)]) | |
def forward( | |
self, x, attn_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=None | |
): # docstyle-ignore | |
""" | |
Parameters: | |
x: torch.tensor(bs, seq_length, dim) Input sequence embedded. | |
attn_mask: torch.tensor(bs, seq_length) Attention mask on the sequence. | |
Returns: | |
hidden_state: torch.tensor(bs, seq_length, dim) Sequence of hidden states in the last (top) | |
layer all_hidden_states: Tuple[torch.tensor(bs, seq_length, dim)] | |
Tuple of length n_layers with the hidden states from each layer. | |
Optional: only if output_hidden_states=True | |
all_attentions: Tuple[torch.tensor(bs, n_heads, seq_length, seq_length)] | |
Tuple of length n_layers with the attention weights from each layer | |
Optional: only if output_attentions=True | |
""" | |
all_hidden_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
hidden_state = x | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_state,) | |
layer_outputs = layer_module( | |
x=hidden_state, attn_mask=attn_mask, head_mask=head_mask[i], output_attentions=output_attentions | |
) | |
hidden_state = layer_outputs[-1] | |
if output_attentions: | |
assert len(layer_outputs) == 2 | |
attentions = layer_outputs[0] | |
all_attentions = all_attentions + (attentions,) | |
else: | |
assert len(layer_outputs) == 1 | |
# Add last layer | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_state,) | |
if not return_dict: | |
return tuple(v for v in [hidden_state, all_hidden_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_state, hidden_states=all_hidden_states, attentions=all_attentions | |
) | |
# INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL # | |
class DistilBertPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = DistilBertConfig | |
load_tf_weights = None | |
base_model_prefix = "distilbert" | |
def _init_weights(self, module): | |
"""Initialize the weights.""" | |
if isinstance(module, nn.Linear): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
DISTILBERT_START_DOCSTRING = r""" | |
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic | |
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, | |
pruning heads etc.) | |
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ | |
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to | |
general usage and behavior. | |
Parameters: | |
config (:class:`~transformers.DistilBertConfig`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model | |
weights. | |
""" | |
DISTILBERT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using :class:`~transformers.DistilBertTokenizer`. See | |
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): | |
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
vectors than the model's internal embedding lookup matrix. | |
output_attentions (:obj:`bool`, `optional`): | |
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
tensors for more detail. | |
output_hidden_states (:obj:`bool`, `optional`): | |
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
more detail. | |
return_dict (:obj:`bool`, `optional`): | |
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
""" | |
class DistilBertModel(DistilBertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.embeddings = Embeddings(config) # Embeddings | |
self.transformer = Transformer(config) # Encoder | |
self.init_weights() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, new_embeddings): | |
self.embeddings.word_embeddings = new_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.transformer.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
head_mask=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if attention_mask is None: | |
attention_mask = torch.ones(input_shape, device=device) # (bs, seq_length) | |
# Prepare head mask if needed | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
if inputs_embeds is None: | |
inputs_embeds = self.embeddings(input_ids) # (bs, seq_length, dim) | |
return self.transformer( | |
x=inputs_embeds, | |
attn_mask=attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
class DistilBertForMaskedLM(DistilBertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.distilbert = DistilBertModel(config) | |
self.vocab_transform = nn.Linear(config.dim, config.dim) | |
self.vocab_layer_norm = nn.LayerNorm(config.dim, eps=1e-12) | |
self.vocab_projector = nn.Linear(config.dim, config.vocab_size) | |
self.init_weights() | |
self.mlm_loss_fct = nn.CrossEntropyLoss() | |
def get_output_embeddings(self): | |
return self.vocab_projector | |
def set_output_embeddings(self, new_embeddings): | |
self.vocab_projector = new_embeddings | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., | |
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored | |
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
dlbrt_output = self.distilbert( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = dlbrt_output[0] # (bs, seq_length, dim) | |
prediction_logits = self.vocab_transform(hidden_states) # (bs, seq_length, dim) | |
prediction_logits = gelu(prediction_logits) # (bs, seq_length, dim) | |
prediction_logits = self.vocab_layer_norm(prediction_logits) # (bs, seq_length, dim) | |
prediction_logits = self.vocab_projector(prediction_logits) # (bs, seq_length, vocab_size) | |
mlm_loss = None | |
if labels is not None: | |
mlm_loss = self.mlm_loss_fct(prediction_logits.view(-1, prediction_logits.size(-1)), labels.view(-1)) | |
if not return_dict: | |
output = (prediction_logits,) + dlbrt_output[1:] | |
return ((mlm_loss,) + output) if mlm_loss is not None else output | |
return MaskedLMOutput( | |
loss=mlm_loss, | |
logits=prediction_logits, | |
hidden_states=dlbrt_output.hidden_states, | |
attentions=dlbrt_output.attentions, | |
) | |
class DistilBertForSequenceClassification(DistilBertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.config = config | |
self.distilbert = DistilBertModel(config) | |
self.pre_classifier = nn.Linear(config.dim, config.dim) | |
self.classifier = nn.Linear(config.dim, config.num_labels) | |
self.dropout = nn.Dropout(config.seq_classif_dropout) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., | |
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), | |
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
distilbert_output = self.distilbert( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_state = distilbert_output[0] # (bs, seq_len, dim) | |
pooled_output = hidden_state[:, 0] # (bs, dim) | |
pooled_output = self.pre_classifier(pooled_output) # (bs, dim) | |
pooled_output = nn.ReLU()(pooled_output) # (bs, dim) | |
pooled_output = self.dropout(pooled_output) # (bs, dim) | |
logits = self.classifier(pooled_output) # (bs, num_labels) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + distilbert_output[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=distilbert_output.hidden_states, | |
attentions=distilbert_output.attentions, | |
) | |
class DistilBertForQuestionAnswering(DistilBertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.distilbert = DistilBertModel(config) | |
self.qa_outputs = nn.Linear(config.dim, config.num_labels) | |
assert config.num_labels == 2 | |
self.dropout = nn.Dropout(config.qa_dropout) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
head_mask=None, | |
inputs_embeds=None, | |
start_positions=None, | |
end_positions=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the | |
sequence are not taken into account for computing the loss. | |
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the | |
sequence are not taken into account for computing the loss. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
distilbert_output = self.distilbert( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = distilbert_output[0] # (bs, max_query_len, dim) | |
hidden_states = self.dropout(hidden_states) # (bs, max_query_len, dim) | |
logits = self.qa_outputs(hidden_states) # (bs, max_query_len, 2) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1).contiguous() # (bs, max_query_len) | |
end_logits = end_logits.squeeze(-1).contiguous() # (bs, max_query_len) | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + distilbert_output[1:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return QuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=distilbert_output.hidden_states, | |
attentions=distilbert_output.attentions, | |
) | |
class DistilBertForTokenClassification(DistilBertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.distilbert = DistilBertModel(config) | |
self.dropout = nn.Dropout(config.dropout) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - | |
1]``. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.distilbert( | |
input_ids, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# Only keep active parts of the loss | |
if attention_mask is not None: | |
active_loss = attention_mask.view(-1) == 1 | |
active_logits = logits.view(-1, self.num_labels) | |
active_labels = torch.where( | |
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) | |
) | |
loss = loss_fct(active_logits, active_labels) | |
else: | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class DistilBertForMultipleChoice(DistilBertPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.distilbert = DistilBertModel(config) | |
self.pre_classifier = nn.Linear(config.dim, config.dim) | |
self.classifier = nn.Linear(config.dim, 1) | |
self.dropout = nn.Dropout(config.seq_classif_dropout) | |
self.init_weights() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
head_mask=None, | |
inputs_embeds=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., | |
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See | |
:obj:`input_ids` above) | |
Returns: | |
Examples:: | |
>>> from transformers import DistilBertTokenizer, DistilBertForMultipleChoice | |
>>> import torch | |
>>> tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased') | |
>>> model = DistilBertForMultipleChoice.from_pretrained('distilbert-base-cased') | |
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." | |
>>> choice0 = "It is eaten with a fork and a knife." | |
>>> choice1 = "It is eaten while held in the hand." | |
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1 | |
>>> encoding = tokenizer([[prompt, choice0], [prompt, choice1]], return_tensors='pt', padding=True) | |
>>> outputs = model(**{k: v.unsqueeze(0) for k,v in encoding.items()}, labels=labels) # batch size is 1 | |
>>> # the linear classifier still needs to be trained | |
>>> loss = outputs.loss | |
>>> logits = outputs.logits | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | |
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None | |
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
inputs_embeds = ( | |
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) | |
if inputs_embeds is not None | |
else None | |
) | |
outputs = self.distilbert( | |
input_ids, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_state = outputs[0] # (bs * num_choices, seq_len, dim) | |
pooled_output = hidden_state[:, 0] # (bs * num_choices, dim) | |
pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim) | |
pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim) | |
pooled_output = self.dropout(pooled_output) # (bs * num_choices, dim) | |
logits = self.classifier(pooled_output) # (bs * num_choices, 1) | |
reshaped_logits = logits.view(-1, num_choices) # (bs, num_choices) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels) | |
if not return_dict: | |
output = (reshaped_logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return MultipleChoiceModelOutput( | |
loss=loss, | |
logits=reshaped_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |