Spaces:
Sleeping
Sleeping
| # coding=utf-8 | |
| # Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ DistilBERT model configuration """ | |
| from collections import OrderedDict | |
| from typing import Mapping | |
| from ...configuration_utils import PretrainedConfig | |
| from ...onnx import OnnxConfig | |
| from ...utils import logging | |
| logger = logging.get_logger(__name__) | |
| DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
| "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", | |
| "distilbert-base-uncased-distilled-squad": "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json", | |
| "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", | |
| "distilbert-base-cased-distilled-squad": "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json", | |
| "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", | |
| "distilbert-base-multilingual-cased": "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json", | |
| "distilbert-base-uncased-finetuned-sst-2-english": "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json", | |
| } | |
| class DistilBertConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a :class:`~transformers.DistilBertModel` or a | |
| :class:`~transformers.TFDistilBertModel`. It is used to instantiate a DistilBERT model according to the specified | |
| arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar | |
| configuration to that of the DistilBERT `distilbert-base-uncased | |
| <https://huggingface.co/distilbert-base-uncased>`__ architecture. | |
| Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model | |
| outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. | |
| Args: | |
| vocab_size (:obj:`int`, `optional`, defaults to 30522): | |
| Vocabulary size of the DistilBERT model. Defines the number of different tokens that can be represented by | |
| the :obj:`inputs_ids` passed when calling :class:`~transformers.DistilBertModel` or | |
| :class:`~transformers.TFDistilBertModel`. | |
| max_position_embeddings (:obj:`int`, `optional`, defaults to 512): | |
| The maximum sequence length that this model might ever be used with. Typically set this to something large | |
| just in case (e.g., 512 or 1024 or 2048). | |
| sinusoidal_pos_embds (:obj:`boolean`, `optional`, defaults to :obj:`False`): | |
| Whether to use sinusoidal positional embeddings. | |
| n_layers (:obj:`int`, `optional`, defaults to 6): | |
| Number of hidden layers in the Transformer encoder. | |
| n_heads (:obj:`int`, `optional`, defaults to 12): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| dim (:obj:`int`, `optional`, defaults to 768): | |
| Dimensionality of the encoder layers and the pooler layer. | |
| hidden_dim (:obj:`int`, `optional`, defaults to 3072): | |
| The size of the "intermediate" (often named feed-forward) layer in the Transformer encoder. | |
| dropout (:obj:`float`, `optional`, defaults to 0.1): | |
| The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | |
| attention_dropout (:obj:`float`, `optional`, defaults to 0.1): | |
| The dropout ratio for the attention probabilities. | |
| activation (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`): | |
| The non-linear activation function (function or string) in the encoder and pooler. If string, | |
| :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported. | |
| initializer_range (:obj:`float`, `optional`, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| qa_dropout (:obj:`float`, `optional`, defaults to 0.1): | |
| The dropout probabilities used in the question answering model | |
| :class:`~transformers.DistilBertForQuestionAnswering`. | |
| seq_classif_dropout (:obj:`float`, `optional`, defaults to 0.2): | |
| The dropout probabilities used in the sequence classification and the multiple choice model | |
| :class:`~transformers.DistilBertForSequenceClassification`. | |
| Examples:: | |
| >>> from transformers import DistilBertModel, DistilBertConfig | |
| >>> # Initializing a DistilBERT configuration | |
| >>> configuration = DistilBertConfig() | |
| >>> # Initializing a model from the configuration | |
| >>> model = DistilBertModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| """ | |
| model_type = "distilbert" | |
| def __init__( | |
| self, | |
| vocab_size=30522, | |
| max_position_embeddings=512, | |
| sinusoidal_pos_embds=False, | |
| n_layers=6, | |
| n_heads=12, | |
| dim=768, | |
| hidden_dim=4 * 768, | |
| dropout=0.1, | |
| attention_dropout=0.1, | |
| activation="gelu", | |
| initializer_range=0.02, | |
| qa_dropout=0.1, | |
| seq_classif_dropout=0.2, | |
| pad_token_id=0, | |
| **kwargs | |
| ): | |
| super().__init__(**kwargs, pad_token_id=pad_token_id) | |
| self.vocab_size = vocab_size | |
| self.max_position_embeddings = max_position_embeddings | |
| self.sinusoidal_pos_embds = sinusoidal_pos_embds | |
| self.n_layers = n_layers | |
| self.n_heads = n_heads | |
| self.dim = dim | |
| self.hidden_dim = hidden_dim | |
| self.dropout = dropout | |
| self.attention_dropout = attention_dropout | |
| self.activation = activation | |
| self.initializer_range = initializer_range | |
| self.qa_dropout = qa_dropout | |
| self.seq_classif_dropout = seq_classif_dropout | |
| def hidden_size(self): | |
| return self.dim | |
| def num_attention_heads(self): | |
| return self.n_heads | |
| def num_hidden_layers(self): | |
| return self.n_layers | |
| class DistilBertOnnxConfig(OnnxConfig): | |
| def inputs(self) -> Mapping[str, Mapping[int, str]]: | |
| return OrderedDict( | |
| [ | |
| ("input_ids", {0: "batch", 1: "sequence"}), | |
| ("attention_mask", {0: "batch", 1: "sequence"}), | |
| ] | |
| ) | |
| def outputs(self) -> Mapping[str, Mapping[int, str]]: | |
| return OrderedDict([("last_hidden_state", {0: "batch", 1: "sequence"})]) | |