Spaces:
Running
Running
# coding=utf-8 | |
# Copyright 2021 Facebook AI Research (FAIR), Ross Wightman, The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch DeiT model. """ | |
import collections.abc | |
import math | |
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...file_utils import ( | |
ModelOutput, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
replace_return_docstrings, | |
) | |
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, SequenceClassifierOutput | |
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import logging | |
from .configuration_deit import DeiTConfig | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "DeiTConfig" | |
_CHECKPOINT_FOR_DOC = "facebook/deit-base-distilled-patch16-224" | |
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"facebook/deit-base-distilled-patch16-224", | |
# See all DeiT models at https://huggingface.co/models?filter=deit | |
] | |
# Copied from transformers.models.vit.modeling_vit.to_2tuple | |
def to_2tuple(x): | |
if isinstance(x, collections.abc.Iterable): | |
return x | |
return (x, x) | |
# Based on timm implementation, which can be found here: | |
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
class DeiTEmbeddings(nn.Module): | |
""" | |
Construct the CLS token, distillation token, position and patch embeddings. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) | |
self.distillation_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) | |
self.patch_embeddings = PatchEmbeddings( | |
image_size=config.image_size, | |
patch_size=config.patch_size, | |
num_channels=config.num_channels, | |
embed_dim=config.hidden_size, | |
) | |
num_patches = self.patch_embeddings.num_patches | |
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 2, config.hidden_size)) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, pixel_values): | |
batch_size = pixel_values.shape[0] | |
embeddings = self.patch_embeddings(pixel_values) | |
cls_tokens = self.cls_token.expand(batch_size, -1, -1) | |
distillation_tokens = self.distillation_token.expand(batch_size, -1, -1) | |
embeddings = torch.cat((cls_tokens, distillation_tokens, embeddings), dim=1) | |
embeddings = embeddings + self.position_embeddings | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
# Copied from transformers.models.vit.modeling_vit.PatchEmbeddings | |
class PatchEmbeddings(nn.Module): | |
""" | |
Image to Patch Embedding. | |
""" | |
def __init__(self, image_size=224, patch_size=16, num_channels=3, embed_dim=768): | |
super().__init__() | |
image_size = to_2tuple(image_size) | |
patch_size = to_2tuple(patch_size) | |
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, pixel_values): | |
batch_size, num_channels, height, width = pixel_values.shape | |
# FIXME look at relaxing size constraints | |
if height != self.image_size[0] or width != self.image_size[1]: | |
raise ValueError( | |
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." | |
) | |
x = self.projection(pixel_values).flatten(2).transpose(1, 2) | |
return x | |
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->DeiT | |
class DeiTSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " | |
f"heads {config.num_attention_heads}." | |
) | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def forward(self, hidden_states, head_mask=None, output_attentions=False): | |
mixed_query_layer = self.query(hidden_states) | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
context_layer = torch.matmul(attention_probs, value_layer) | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->DeiT | |
class DeiTSelfOutput(nn.Module): | |
""" | |
The residual connection is defined in DeiTLayer instead of here (as is the case with other models), due to the | |
layernorm applied before each block. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->DeiT | |
class DeiTAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.attention = DeiTSelfAttention(config) | |
self.output = DeiTSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.attention.query = prune_linear_layer(self.attention.query, index) | |
self.attention.key = prune_linear_layer(self.attention.key, index) | |
self.attention.value = prune_linear_layer(self.attention.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) | |
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward(self, hidden_states, head_mask=None, output_attentions=False): | |
self_outputs = self.attention(hidden_states, head_mask, output_attentions) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->DeiT | |
class DeiTIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->DeiT | |
class DeiTOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states, input_tensor): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = hidden_states + input_tensor | |
return hidden_states | |
# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->DeiT | |
class DeiTLayer(nn.Module): | |
"""This corresponds to the Block class in the timm implementation.""" | |
def __init__(self, config): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = DeiTAttention(config) | |
self.intermediate = DeiTIntermediate(config) | |
self.output = DeiTOutput(config) | |
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states, head_mask=None, output_attentions=False): | |
self_attention_outputs = self.attention( | |
self.layernorm_before(hidden_states), # in DeiT, layernorm is applied before self-attention | |
head_mask, | |
output_attentions=output_attentions, | |
) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
# first residual connection | |
hidden_states = attention_output + hidden_states | |
# in DeiT, layernorm is also applied after self-attention | |
layer_output = self.layernorm_after(hidden_states) | |
# TODO feedforward chunking not working for now | |
# layer_output = apply_chunking_to_forward( | |
# self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, layer_output | |
# ) | |
layer_output = self.intermediate(layer_output) | |
# second residual connection is done here | |
layer_output = self.output(layer_output, hidden_states) | |
outputs = (layer_output,) + outputs | |
return outputs | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output) | |
return layer_output | |
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->DeiT | |
class DeiTEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([DeiTLayer(config) for _ in range(config.num_hidden_layers)]) | |
def forward( | |
self, | |
hidden_states, | |
head_mask=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_head_mask = head_mask[i] if head_mask is not None else None | |
if getattr(self.config, "gradient_checkpointing", False) and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer_module), | |
hidden_states, | |
layer_head_mask, | |
) | |
else: | |
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
# Copied from transformers.models.vit.modeling_vit.ViTPreTrainedModel with ViT->DeiT all-casing | |
class DeiTPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = DeiTConfig | |
base_model_prefix = "deit" | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
DEIT_START_DOCSTRING = r""" | |
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config (:class:`~transformers.DeiTConfig`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model | |
weights. | |
""" | |
DEIT_INPUTS_DOCSTRING = r""" | |
Args: | |
pixel_values (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_channels, height, width)`): | |
Pixel values. Pixel values can be obtained using :class:`~transformers.DeiTFeatureExtractor`. See | |
:meth:`transformers.DeiTFeatureExtractor.__call__` for details. | |
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
output_attentions (:obj:`bool`, `optional`): | |
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
tensors for more detail. | |
output_hidden_states (:obj:`bool`, `optional`): | |
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
more detail. | |
return_dict (:obj:`bool`, `optional`): | |
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
""" | |
class DeiTModel(DeiTPreTrainedModel): | |
def __init__(self, config, add_pooling_layer=True): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = DeiTEmbeddings(config) | |
self.encoder = DeiTEncoder(config) | |
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.pooler = DeiTPooler(config) if add_pooling_layer else None | |
self.init_weights() | |
def get_input_embeddings(self): | |
return self.embeddings.patch_embeddings | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
pixel_values=None, | |
head_mask=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
Returns: | |
Examples:: | |
>>> from transformers import DeiTFeatureExtractor, DeiTModel | |
>>> from PIL import Image | |
>>> import requests | |
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> feature_extractor = DeiTFeatureExtractor.from_pretrained('facebook/deit-base-distilled-patch16-224') | |
>>> model = DeiTModel.from_pretrained('facebook/deit-base-distilled-patch16-224', add_pooling_layer=False) | |
>>> inputs = feature_extractor(images=image, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> last_hidden_states = outputs.last_hidden_state | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if pixel_values is None: | |
raise ValueError("You have to specify pixel_values") | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
embedding_output = self.embeddings(pixel_values) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
sequence_output = self.layernorm(sequence_output) | |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
if not return_dict: | |
return (sequence_output, pooled_output) + encoder_outputs[1:] | |
return BaseModelOutputWithPooling( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
# Copied from transformers.models.vit.modeling_vit.ViTPooler with ViT->DeiT | |
class DeiTPooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class DeiTForImageClassification(DeiTPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.deit = DeiTModel(config, add_pooling_layer=False) | |
# Classifier head | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() | |
self.init_weights() | |
def forward( | |
self, | |
pixel_values=None, | |
head_mask=None, | |
labels=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
r""" | |
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the image classification/regression loss. Indices should be in :obj:`[0, ..., | |
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), | |
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
Returns: | |
Examples:: | |
>>> from transformers import DeiTFeatureExtractor, DeiTForImageClassification | |
>>> from PIL import Image | |
>>> import requests | |
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> # note: we are loading a DeiTForImageClassificationWithTeacher from the hub here, | |
>>> # so the head will be randomly initialized, hence the predictions will be random | |
>>> feature_extractor = DeiTFeatureExtractor.from_pretrained('facebook/deit-base-distilled-patch16-224') | |
>>> model = DeiTForImageClassification.from_pretrained('facebook/deit-base-distilled-patch16-224') | |
>>> inputs = feature_extractor(images=image, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> logits = outputs.logits | |
>>> # model predicts one of the 1000 ImageNet classes | |
>>> predicted_class_idx = logits.argmax(-1).item() | |
>>> print("Predicted class:", model.config.id2label[predicted_class_idx]) | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.deit( | |
pixel_values, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.classifier(sequence_output[:, 0, :]) | |
# we don't use the distillation token | |
loss = None | |
if labels is not None: | |
if self.num_labels == 1: | |
# We are doing regression | |
loss_fct = MSELoss() | |
loss = loss_fct(logits.view(-1), labels.view(-1)) | |
else: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class DeiTForImageClassificationWithTeacherOutput(ModelOutput): | |
""" | |
Output type of :class:`~transformers.DeiTForImageClassificationWithTeacher`. | |
Args: | |
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): | |
Prediction scores as the average of the cls_logits and distillation logits. | |
cls_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): | |
Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the | |
class token). | |
distillation_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): | |
Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the | |
distillation token). | |
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) | |
of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of | |
each layer plus the initial embedding outputs. | |
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
weighted average in the self-attention heads. | |
""" | |
logits: torch.FloatTensor = None | |
cls_logits: torch.FloatTensor = None | |
distillation_logits: torch.FloatTensor = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class DeiTForImageClassificationWithTeacher(DeiTPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.deit = DeiTModel(config, add_pooling_layer=False) | |
# Classifier heads | |
self.cls_classifier = ( | |
nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() | |
) | |
self.distillation_classifier = ( | |
nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() | |
) | |
self.init_weights() | |
def forward( | |
self, | |
pixel_values=None, | |
head_mask=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
""" | |
Returns: | |
Examples:: | |
>>> from transformers import DeiTFeatureExtractor, DeiTForImageClassificationWithTeacher | |
>>> from PIL import Image | |
>>> import requests | |
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg' | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> feature_extractor = DeiTFeatureExtractor.from_pretrained('facebook/deit-base-distilled-patch16-224') | |
>>> model = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224') | |
>>> inputs = feature_extractor(images=image, return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> logits = outputs.logits | |
>>> # model predicts one of the 1000 ImageNet classes | |
>>> predicted_class_idx = logits.argmax(-1).item() | |
>>> print("Predicted class:", model.config.id2label[predicted_class_idx]) | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.deit( | |
pixel_values, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
cls_logits = self.cls_classifier(sequence_output[:, 0, :]) | |
distillation_logits = self.distillation_classifier(sequence_output[:, 1, :]) | |
# during inference, return the average of both classifier predictions | |
logits = (cls_logits + distillation_logits) / 2 | |
if not return_dict: | |
output = (logits, cls_logits, distillation_logits) + outputs[2:] | |
return output | |
return DeiTForImageClassificationWithTeacherOutput( | |
logits=logits, | |
cls_logits=cls_logits, | |
distillation_logits=distillation_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |