Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" TF 2.0 ConvBERT model. """ | |
import tensorflow as tf | |
from ...activations_tf import get_tf_activation | |
from ...file_utils import ( | |
MULTIPLE_CHOICE_DUMMY_INPUTS, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
) | |
from ...modeling_tf_outputs import ( | |
TFBaseModelOutput, | |
TFMaskedLMOutput, | |
TFMultipleChoiceModelOutput, | |
TFQuestionAnsweringModelOutput, | |
TFSequenceClassifierOutput, | |
TFTokenClassifierOutput, | |
) | |
from ...modeling_tf_utils import ( | |
TFMaskedLanguageModelingLoss, | |
TFMultipleChoiceLoss, | |
TFPreTrainedModel, | |
TFQuestionAnsweringLoss, | |
TFSequenceClassificationLoss, | |
TFSequenceSummary, | |
TFTokenClassificationLoss, | |
get_initializer, | |
input_processing, | |
keras_serializable, | |
shape_list, | |
) | |
from ...utils import logging | |
from .configuration_convbert import ConvBertConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "YituTech/conv-bert-base" | |
_CONFIG_FOR_DOC = "ConvBertConfig" | |
_TOKENIZER_FOR_DOC = "ConvBertTokenizer" | |
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"YituTech/conv-bert-base", | |
"YituTech/conv-bert-medium-small", | |
"YituTech/conv-bert-small", | |
# See all ConvBERT models at https://huggingface.co/models?filter=convbert | |
] | |
# Copied from transformers.models.albert.modeling_tf_albert.TFAlbertEmbeddings with Albert->ConvBert | |
class TFConvBertEmbeddings(tf.keras.layers.Layer): | |
"""Construct the embeddings from word, position and token_type embeddings.""" | |
def __init__(self, config: ConvBertConfig, **kwargs): | |
super().__init__(**kwargs) | |
self.vocab_size = config.vocab_size | |
self.type_vocab_size = config.type_vocab_size | |
self.embedding_size = config.embedding_size | |
self.max_position_embeddings = config.max_position_embeddings | |
self.initializer_range = config.initializer_range | |
self.embeddings_sum = tf.keras.layers.Add() | |
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") | |
self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) | |
def build(self, input_shape: tf.TensorShape): | |
with tf.name_scope("word_embeddings"): | |
self.weight = self.add_weight( | |
name="weight", | |
shape=[self.vocab_size, self.embedding_size], | |
initializer=get_initializer(self.initializer_range), | |
) | |
with tf.name_scope("token_type_embeddings"): | |
self.token_type_embeddings = self.add_weight( | |
name="embeddings", | |
shape=[self.type_vocab_size, self.embedding_size], | |
initializer=get_initializer(self.initializer_range), | |
) | |
with tf.name_scope("position_embeddings"): | |
self.position_embeddings = self.add_weight( | |
name="embeddings", | |
shape=[self.max_position_embeddings, self.embedding_size], | |
initializer=get_initializer(self.initializer_range), | |
) | |
super().build(input_shape) | |
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call | |
def call( | |
self, | |
input_ids: tf.Tensor = None, | |
position_ids: tf.Tensor = None, | |
token_type_ids: tf.Tensor = None, | |
inputs_embeds: tf.Tensor = None, | |
training: bool = False, | |
) -> tf.Tensor: | |
""" | |
Applies embedding based on inputs tensor. | |
Returns: | |
final_embeddings (:obj:`tf.Tensor`): output embedding tensor. | |
""" | |
assert not (input_ids is None and inputs_embeds is None) | |
if input_ids is not None: | |
inputs_embeds = tf.gather(params=self.weight, indices=input_ids) | |
input_shape = shape_list(inputs_embeds)[:-1] | |
if token_type_ids is None: | |
token_type_ids = tf.fill(dims=input_shape, value=0) | |
if position_ids is None: | |
position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) | |
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) | |
position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1)) | |
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) | |
final_embeddings = self.embeddings_sum(inputs=[inputs_embeds, position_embeds, token_type_embeds]) | |
final_embeddings = self.LayerNorm(inputs=final_embeddings) | |
final_embeddings = self.dropout(inputs=final_embeddings, training=training) | |
return final_embeddings | |
class TFConvBertSelfAttention(tf.keras.layers.Layer): | |
def __init__(self, config, **kwargs): | |
super().__init__(**kwargs) | |
if config.hidden_size % config.num_attention_heads != 0: | |
raise ValueError( | |
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({config.num_attention_heads})" | |
) | |
new_num_attention_heads = int(config.num_attention_heads / config.head_ratio) | |
if new_num_attention_heads < 1: | |
self.head_ratio = config.num_attention_heads | |
num_attention_heads = 1 | |
else: | |
num_attention_heads = new_num_attention_heads | |
self.head_ratio = config.head_ratio | |
self.num_attention_heads = num_attention_heads | |
self.conv_kernel_size = config.conv_kernel_size | |
assert ( | |
config.hidden_size % self.num_attention_heads == 0 | |
), "hidden_size should be divisible by num_attention_heads" | |
self.attention_head_size = config.hidden_size // config.num_attention_heads | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = tf.keras.layers.Dense( | |
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" | |
) | |
self.key = tf.keras.layers.Dense( | |
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" | |
) | |
self.value = tf.keras.layers.Dense( | |
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" | |
) | |
self.key_conv_attn_layer = tf.keras.layers.SeparableConv1D( | |
self.all_head_size, | |
self.conv_kernel_size, | |
padding="same", | |
activation=None, | |
depthwise_initializer=get_initializer(1 / self.conv_kernel_size), | |
pointwise_initializer=get_initializer(config.initializer_range), | |
name="key_conv_attn_layer", | |
) | |
self.conv_kernel_layer = tf.keras.layers.Dense( | |
self.num_attention_heads * self.conv_kernel_size, | |
activation=None, | |
name="conv_kernel_layer", | |
kernel_initializer=get_initializer(config.initializer_range), | |
) | |
self.conv_out_layer = tf.keras.layers.Dense( | |
self.all_head_size, | |
activation=None, | |
name="conv_out_layer", | |
kernel_initializer=get_initializer(config.initializer_range), | |
) | |
self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob) | |
def transpose_for_scores(self, x, batch_size): | |
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] | |
x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) | |
return tf.transpose(x, perm=[0, 2, 1, 3]) | |
def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False): | |
batch_size = shape_list(hidden_states)[0] | |
mixed_query_layer = self.query(hidden_states) | |
mixed_key_layer = self.key(hidden_states) | |
mixed_value_layer = self.value(hidden_states) | |
mixed_key_conv_attn_layer = self.key_conv_attn_layer(hidden_states) | |
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) | |
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) | |
conv_attn_layer = tf.multiply(mixed_key_conv_attn_layer, mixed_query_layer) | |
conv_kernel_layer = self.conv_kernel_layer(conv_attn_layer) | |
conv_kernel_layer = tf.reshape(conv_kernel_layer, [-1, self.conv_kernel_size, 1]) | |
conv_kernel_layer = tf.nn.softmax(conv_kernel_layer, axis=1) | |
paddings = tf.constant( | |
[ | |
[ | |
0, | |
0, | |
], | |
[int((self.conv_kernel_size - 1) / 2), int((self.conv_kernel_size - 1) / 2)], | |
[0, 0], | |
] | |
) | |
conv_out_layer = self.conv_out_layer(hidden_states) | |
conv_out_layer = tf.reshape(conv_out_layer, [batch_size, -1, self.all_head_size]) | |
conv_out_layer = tf.pad(conv_out_layer, paddings, "CONSTANT") | |
unfold_conv_out_layer = tf.stack( | |
[ | |
tf.slice(conv_out_layer, [0, i, 0], [batch_size, shape_list(mixed_query_layer)[1], self.all_head_size]) | |
for i in range(self.conv_kernel_size) | |
], | |
axis=-1, | |
) | |
conv_out_layer = tf.reshape(unfold_conv_out_layer, [-1, self.attention_head_size, self.conv_kernel_size]) | |
conv_out_layer = tf.matmul(conv_out_layer, conv_kernel_layer) | |
conv_out_layer = tf.reshape(conv_out_layer, [-1, self.all_head_size]) | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = tf.matmul( | |
query_layer, key_layer, transpose_b=True | |
) # (batch size, num_heads, seq_len_q, seq_len_k) | |
dk = tf.cast(shape_list(key_layer)[-1], attention_scores.dtype) # scale attention_scores | |
attention_scores = attention_scores / tf.math.sqrt(dk) | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in TFBertModel call() function) | |
attention_scores = attention_scores + attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = tf.nn.softmax(attention_scores, axis=-1) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.dropout(attention_probs, training=training) | |
# Mask heads if we want to | |
if head_mask is not None: | |
attention_probs = attention_probs * head_mask | |
value_layer = tf.reshape( | |
mixed_value_layer, [batch_size, -1, self.num_attention_heads, self.attention_head_size] | |
) | |
value_layer = tf.transpose(value_layer, [0, 2, 1, 3]) | |
context_layer = tf.matmul(attention_probs, value_layer) | |
context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) | |
conv_out = tf.reshape(conv_out_layer, [batch_size, -1, self.num_attention_heads, self.attention_head_size]) | |
context_layer = tf.concat([context_layer, conv_out], 2) | |
context_layer = tf.reshape( | |
context_layer, (batch_size, -1, self.head_ratio * self.all_head_size) | |
) # (batch_size, seq_len_q, all_head_size) | |
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
return outputs | |
class TFConvBertSelfOutput(tf.keras.layers.Layer): | |
def __init__(self, config, **kwargs): | |
super().__init__(**kwargs) | |
self.dense = tf.keras.layers.Dense( | |
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" | |
) | |
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") | |
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) | |
def call(self, hidden_states, input_tensor, training=False): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states, training=training) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class TFConvBertAttention(tf.keras.layers.Layer): | |
def __init__(self, config, **kwargs): | |
super().__init__(**kwargs) | |
self.self_attention = TFConvBertSelfAttention(config, name="self") | |
self.dense_output = TFConvBertSelfOutput(config, name="output") | |
def prune_heads(self, heads): | |
raise NotImplementedError | |
def call(self, input_tensor, attention_mask, head_mask, output_attentions, training=False): | |
self_outputs = self.self_attention( | |
input_tensor, attention_mask, head_mask, output_attentions, training=training | |
) | |
attention_output = self.dense_output(self_outputs[0], input_tensor, training=training) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
class GroupedLinearLayer(tf.keras.layers.Layer): | |
def __init__(self, input_size, output_size, num_groups, kernel_initializer, **kwargs): | |
super().__init__(**kwargs) | |
self.input_size = input_size | |
self.output_size = output_size | |
self.num_groups = num_groups | |
self.kernel_initializer = kernel_initializer | |
self.group_in_dim = self.input_size // self.num_groups | |
self.group_out_dim = self.output_size // self.num_groups | |
def build(self, input_shape): | |
self.kernel = self.add_weight( | |
"kernel", | |
shape=[self.group_out_dim, self.group_in_dim, self.num_groups], | |
initializer=self.kernel_initializer, | |
trainable=True, | |
) | |
self.bias = self.add_weight( | |
"bias", shape=[self.output_size], initializer=self.kernel_initializer, dtype=self.dtype, trainable=True | |
) | |
def call(self, hidden_states): | |
batch_size = shape_list(hidden_states)[0] | |
x = tf.transpose(tf.reshape(hidden_states, [-1, self.num_groups, self.group_in_dim]), [1, 0, 2]) | |
x = tf.matmul(x, tf.transpose(self.kernel, [2, 1, 0])) | |
x = tf.transpose(x, [1, 0, 2]) | |
x = tf.reshape(x, [batch_size, -1, self.output_size]) | |
x = tf.nn.bias_add(value=x, bias=self.bias) | |
return x | |
class TFConvBertIntermediate(tf.keras.layers.Layer): | |
def __init__(self, config, **kwargs): | |
super().__init__(**kwargs) | |
if config.num_groups == 1: | |
self.dense = tf.keras.layers.Dense( | |
config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" | |
) | |
else: | |
self.dense = GroupedLinearLayer( | |
config.hidden_size, | |
config.intermediate_size, | |
num_groups=config.num_groups, | |
kernel_initializer=get_initializer(config.initializer_range), | |
name="dense", | |
) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = get_tf_activation(config.hidden_act) | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def call(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
class TFConvBertOutput(tf.keras.layers.Layer): | |
def __init__(self, config, **kwargs): | |
super().__init__(**kwargs) | |
if config.num_groups == 1: | |
self.dense = tf.keras.layers.Dense( | |
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" | |
) | |
else: | |
self.dense = GroupedLinearLayer( | |
config.intermediate_size, | |
config.hidden_size, | |
num_groups=config.num_groups, | |
kernel_initializer=get_initializer(config.initializer_range), | |
name="dense", | |
) | |
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") | |
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) | |
def call(self, hidden_states, input_tensor, training=False): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states, training=training) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class TFConvBertLayer(tf.keras.layers.Layer): | |
def __init__(self, config, **kwargs): | |
super().__init__(**kwargs) | |
self.attention = TFConvBertAttention(config, name="attention") | |
self.intermediate = TFConvBertIntermediate(config, name="intermediate") | |
self.bert_output = TFConvBertOutput(config, name="output") | |
def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False): | |
attention_outputs = self.attention( | |
hidden_states, attention_mask, head_mask, output_attentions, training=training | |
) | |
attention_output = attention_outputs[0] | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.bert_output(intermediate_output, attention_output, training=training) | |
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them | |
return outputs | |
class TFConvBertEncoder(tf.keras.layers.Layer): | |
def __init__(self, config, **kwargs): | |
super().__init__(**kwargs) | |
self.layer = [TFConvBertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] | |
def call( | |
self, | |
hidden_states, | |
attention_mask, | |
head_mask, | |
output_attentions, | |
output_hidden_states, | |
return_dict, | |
training=False, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer_outputs = layer_module( | |
hidden_states, attention_mask, head_mask[i], output_attentions, training=training | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
# Add last layer | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) | |
return TFBaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions | |
) | |
class TFConvBertPredictionHeadTransform(tf.keras.layers.Layer): | |
def __init__(self, config, **kwargs): | |
super().__init__(**kwargs) | |
self.dense = tf.keras.layers.Dense( | |
config.embedding_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" | |
) | |
if isinstance(config.hidden_act, str): | |
self.transform_act_fn = get_tf_activation(config.hidden_act) | |
else: | |
self.transform_act_fn = config.hidden_act | |
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") | |
def call(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class TFConvBertMainLayer(tf.keras.layers.Layer): | |
config_class = ConvBertConfig | |
def __init__(self, config, **kwargs): | |
super().__init__(**kwargs) | |
self.embeddings = TFConvBertEmbeddings(config, name="embeddings") | |
if config.embedding_size != config.hidden_size: | |
self.embeddings_project = tf.keras.layers.Dense(config.hidden_size, name="embeddings_project") | |
self.encoder = TFConvBertEncoder(config, name="encoder") | |
self.config = config | |
def get_input_embeddings(self): | |
return self.embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.weight = value | |
self.embeddings.vocab_size = value.shape[0] | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
raise NotImplementedError | |
def get_extended_attention_mask(self, attention_mask, input_shape, dtype): | |
if attention_mask is None: | |
attention_mask = tf.fill(input_shape, 1) | |
# We create a 3D attention mask from a 2D tensor mask. | |
# Sizes are [batch_size, 1, 1, to_seq_length] | |
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
# this attention mask is more simple than the triangular masking of causal attention | |
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
extended_attention_mask = tf.cast(extended_attention_mask, dtype) | |
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
return extended_attention_mask | |
def get_head_mask(self, head_mask): | |
if head_mask is not None: | |
raise NotImplementedError | |
else: | |
head_mask = [None] * self.config.num_hidden_layers | |
return head_mask | |
def call( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
training=False, | |
**kwargs, | |
): | |
inputs = input_processing( | |
func=self.call, | |
config=self.config, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
training=training, | |
kwargs_call=kwargs, | |
) | |
if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif inputs["input_ids"] is not None: | |
input_shape = shape_list(inputs["input_ids"]) | |
elif inputs["inputs_embeds"] is not None: | |
input_shape = shape_list(inputs["inputs_embeds"])[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if inputs["attention_mask"] is None: | |
inputs["attention_mask"] = tf.fill(input_shape, 1) | |
if inputs["token_type_ids"] is None: | |
inputs["token_type_ids"] = tf.fill(input_shape, 0) | |
hidden_states = self.embeddings( | |
inputs["input_ids"], | |
inputs["position_ids"], | |
inputs["token_type_ids"], | |
inputs["inputs_embeds"], | |
training=inputs["training"], | |
) | |
extended_attention_mask = self.get_extended_attention_mask( | |
inputs["attention_mask"], input_shape, hidden_states.dtype | |
) | |
inputs["head_mask"] = self.get_head_mask(inputs["head_mask"]) | |
if hasattr(self, "embeddings_project"): | |
hidden_states = self.embeddings_project(hidden_states, training=inputs["training"]) | |
hidden_states = self.encoder( | |
hidden_states, | |
extended_attention_mask, | |
inputs["head_mask"], | |
inputs["output_attentions"], | |
inputs["output_hidden_states"], | |
inputs["return_dict"], | |
training=inputs["training"], | |
) | |
return hidden_states | |
class TFConvBertPreTrainedModel(TFPreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = ConvBertConfig | |
base_model_prefix = "convbert" | |
CONVBERT_START_DOCSTRING = r""" | |
This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the | |
generic methods the library implements for all its model (such as downloading or saving, resizing the input | |
embeddings, pruning heads etc.) | |
This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use | |
it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage | |
and behavior. | |
.. note:: | |
TF 2.0 models accepts two formats as inputs: | |
- having all inputs as keyword arguments (like PyTorch models), or | |
- having all inputs as a list, tuple or dict in the first positional arguments. | |
This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all | |
the tensors in the first argument of the model call function: :obj:`model(inputs)`. | |
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in | |
the first positional argument : | |
- a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)` | |
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: | |
:obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` | |
- a dictionary with one or several input Tensors associated to the input names given in the docstring: | |
:obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})` | |
Args: | |
config (:class:`~transformers.ConvBertConfig`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model | |
weights. | |
""" | |
CONVBERT_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using :class:`~transformers.ConvBertTokenizer`. See | |
:func:`transformers.PreTrainedTokenizer.__call__` and :func:`transformers.PreTrainedTokenizer.encode` for | |
details. | |
`What are input IDs? <../glossary.html#input-ids>`__ | |
attention_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): | |
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
`What are attention masks? <../glossary.html#attention-mask>`__ | |
token_type_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, | |
1]``: | |
- 0 corresponds to a `sentence A` token, | |
- 1 corresponds to a `sentence B` token. | |
`What are token type IDs? <../glossary.html#token-type-ids>`__ | |
position_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, | |
config.max_position_embeddings - 1]``. | |
`What are position IDs? <../glossary.html#position-ids>`__ | |
head_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (:obj:`tf.Tensor` of shape :obj:`({0}, hidden_size)`, `optional`): | |
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
vectors than the model's internal embedding lookup matrix. | |
output_attentions (:obj:`bool`, `optional`): | |
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the | |
config will be used instead. | |
output_hidden_states (:obj:`bool`, `optional`): | |
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be | |
used instead. | |
return_dict (:obj:`bool`, `optional`): | |
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This | |
argument can be used in eager mode, in graph mode the value will always be set to True. | |
training (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not to use the model in training mode (some modules like dropout modules have different | |
behaviors between training and evaluation). | |
""" | |
class TFConvBertModel(TFConvBertPreTrainedModel): | |
def __init__(self, config, *inputs, **kwargs): | |
super().__init__(config, *inputs, **kwargs) | |
self.convbert = TFConvBertMainLayer(config, name="convbert") | |
def call( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
training=False, | |
**kwargs, | |
): | |
inputs = input_processing( | |
func=self.call, | |
config=self.config, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
training=training, | |
kwargs_call=kwargs, | |
) | |
outputs = self.convbert( | |
input_ids=inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
token_type_ids=inputs["token_type_ids"], | |
position_ids=inputs["position_ids"], | |
head_mask=inputs["head_mask"], | |
inputs_embeds=inputs["inputs_embeds"], | |
output_attentions=inputs["output_attentions"], | |
output_hidden_states=inputs["output_hidden_states"], | |
return_dict=inputs["return_dict"], | |
training=inputs["training"], | |
) | |
return outputs | |
def serving_output(self, output): | |
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None | |
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None | |
return TFBaseModelOutput(last_hidden_state=output.last_hidden_state, hidden_states=hs, attentions=attns) | |
class TFConvBertMaskedLMHead(tf.keras.layers.Layer): | |
def __init__(self, config, input_embeddings, **kwargs): | |
super().__init__(**kwargs) | |
self.vocab_size = config.vocab_size | |
self.embedding_size = config.embedding_size | |
self.input_embeddings = input_embeddings | |
def build(self, input_shape): | |
self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias") | |
super().build(input_shape) | |
def get_output_embeddings(self): | |
return self.input_embeddings | |
def set_output_embeddings(self, value): | |
self.input_embeddings.weight = value | |
self.input_embeddings.vocab_size = shape_list(value)[0] | |
def get_bias(self): | |
return {"bias": self.bias} | |
def set_bias(self, value): | |
self.bias = value["bias"] | |
self.vocab_size = shape_list(value["bias"])[0] | |
def call(self, hidden_states): | |
seq_length = shape_list(tensor=hidden_states)[1] | |
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size]) | |
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) | |
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.vocab_size]) | |
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) | |
return hidden_states | |
class TFConvBertGeneratorPredictions(tf.keras.layers.Layer): | |
def __init__(self, config, **kwargs): | |
super().__init__(**kwargs) | |
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") | |
self.dense = tf.keras.layers.Dense(config.embedding_size, name="dense") | |
def call(self, generator_hidden_states, training=False): | |
hidden_states = self.dense(generator_hidden_states) | |
hidden_states = get_tf_activation("gelu")(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class TFConvBertForMaskedLM(TFConvBertPreTrainedModel, TFMaskedLanguageModelingLoss): | |
def __init__(self, config, *inputs, **kwargs): | |
super().__init__(config, **kwargs) | |
self.vocab_size = config.vocab_size | |
self.convbert = TFConvBertMainLayer(config, name="convbert") | |
self.generator_predictions = TFConvBertGeneratorPredictions(config, name="generator_predictions") | |
if isinstance(config.hidden_act, str): | |
self.activation = get_tf_activation(config.hidden_act) | |
else: | |
self.activation = config.hidden_act | |
self.generator_lm_head = TFConvBertMaskedLMHead(config, self.convbert.embeddings, name="generator_lm_head") | |
def get_lm_head(self): | |
return self.generator_lm_head | |
def get_prefix_bias_name(self): | |
return self.name + "/" + self.generator_lm_head.name | |
def call( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
labels=None, | |
training=False, | |
**kwargs, | |
): | |
r""" | |
labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., | |
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored | |
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` | |
""" | |
inputs = input_processing( | |
func=self.call, | |
config=self.config, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
labels=labels, | |
training=training, | |
kwargs_call=kwargs, | |
) | |
generator_hidden_states = self.convbert( | |
input_ids=inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
token_type_ids=inputs["token_type_ids"], | |
position_ids=inputs["position_ids"], | |
head_mask=inputs["head_mask"], | |
inputs_embeds=inputs["inputs_embeds"], | |
output_attentions=inputs["output_attentions"], | |
output_hidden_states=inputs["output_hidden_states"], | |
return_dict=inputs["return_dict"], | |
training=inputs["training"], | |
) | |
generator_sequence_output = generator_hidden_states[0] | |
prediction_scores = self.generator_predictions(generator_sequence_output, training=inputs["training"]) | |
prediction_scores = self.generator_lm_head(prediction_scores, training=inputs["training"]) | |
loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], prediction_scores) | |
if not inputs["return_dict"]: | |
output = (prediction_scores,) + generator_hidden_states[1:] | |
return ((loss,) + output) if loss is not None else output | |
return TFMaskedLMOutput( | |
loss=loss, | |
logits=prediction_scores, | |
hidden_states=generator_hidden_states.hidden_states, | |
attentions=generator_hidden_states.attentions, | |
) | |
# Copied from transformers.models.bert.modeling_tf_bert.TFBertForMaskedLM.serving_output | |
def serving_output(self, output): | |
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None | |
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None | |
return TFMaskedLMOutput(logits=output.logits, hidden_states=hs, attentions=attns) | |
class TFConvBertClassificationHead(tf.keras.layers.Layer): | |
"""Head for sentence-level classification tasks.""" | |
def __init__(self, config, **kwargs): | |
super().__init__(**kwargs) | |
self.dense = tf.keras.layers.Dense( | |
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" | |
) | |
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) | |
self.out_proj = tf.keras.layers.Dense( | |
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" | |
) | |
self.config = config | |
def call(self, hidden_states, **kwargs): | |
x = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = get_tf_activation(self.config.hidden_act)(x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
class TFConvBertForSequenceClassification(TFConvBertPreTrainedModel, TFSequenceClassificationLoss): | |
def __init__(self, config, *inputs, **kwargs): | |
super().__init__(config, *inputs, **kwargs) | |
self.num_labels = config.num_labels | |
self.convbert = TFConvBertMainLayer(config, name="convbert") | |
self.classifier = TFConvBertClassificationHead(config, name="classifier") | |
def call( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
labels=None, | |
training=False, | |
**kwargs, | |
): | |
r""" | |
labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., | |
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), | |
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
inputs = input_processing( | |
func=self.call, | |
config=self.config, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
labels=labels, | |
training=training, | |
kwargs_call=kwargs, | |
) | |
outputs = self.convbert( | |
inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
token_type_ids=inputs["token_type_ids"], | |
position_ids=inputs["position_ids"], | |
head_mask=inputs["head_mask"], | |
inputs_embeds=inputs["inputs_embeds"], | |
output_attentions=inputs["output_attentions"], | |
output_hidden_states=inputs["output_hidden_states"], | |
return_dict=inputs["return_dict"], | |
training=inputs["training"], | |
) | |
logits = self.classifier(outputs[0], training=inputs["training"]) | |
loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) | |
if not inputs["return_dict"]: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return TFSequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def serving_output(self, output): | |
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None | |
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None | |
return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns) | |
class TFConvBertForMultipleChoice(TFConvBertPreTrainedModel, TFMultipleChoiceLoss): | |
def __init__(self, config, *inputs, **kwargs): | |
super().__init__(config, *inputs, **kwargs) | |
self.convbert = TFConvBertMainLayer(config, name="convbert") | |
self.sequence_summary = TFSequenceSummary( | |
config, initializer_range=config.initializer_range, name="sequence_summary" | |
) | |
self.classifier = tf.keras.layers.Dense( | |
1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" | |
) | |
def dummy_inputs(self): | |
""" | |
Dummy inputs to build the network. | |
Returns: | |
tf.Tensor with dummy inputs | |
""" | |
return {"input_ids": tf.convert_to_tensor(MULTIPLE_CHOICE_DUMMY_INPUTS)} | |
def call( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
labels=None, | |
training=False, | |
**kwargs, | |
): | |
r""" | |
labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., | |
num_choices]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See | |
:obj:`input_ids` above) | |
""" | |
inputs = input_processing( | |
func=self.call, | |
config=self.config, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
labels=labels, | |
training=training, | |
kwargs_call=kwargs, | |
) | |
if inputs["input_ids"] is not None: | |
num_choices = shape_list(inputs["input_ids"])[1] | |
seq_length = shape_list(inputs["input_ids"])[2] | |
else: | |
num_choices = shape_list(inputs["inputs_embeds"])[1] | |
seq_length = shape_list(inputs["inputs_embeds"])[2] | |
flat_input_ids = tf.reshape(inputs["input_ids"], (-1, seq_length)) if inputs["input_ids"] is not None else None | |
flat_attention_mask = ( | |
tf.reshape(inputs["attention_mask"], (-1, seq_length)) if inputs["attention_mask"] is not None else None | |
) | |
flat_token_type_ids = ( | |
tf.reshape(inputs["token_type_ids"], (-1, seq_length)) if inputs["token_type_ids"] is not None else None | |
) | |
flat_position_ids = ( | |
tf.reshape(inputs["position_ids"], (-1, seq_length)) if inputs["position_ids"] is not None else None | |
) | |
flat_inputs_embeds = ( | |
tf.reshape(inputs["inputs_embeds"], (-1, seq_length, shape_list(inputs["inputs_embeds"])[3])) | |
if inputs["inputs_embeds"] is not None | |
else None | |
) | |
outputs = self.convbert( | |
flat_input_ids, | |
flat_attention_mask, | |
flat_token_type_ids, | |
flat_position_ids, | |
inputs["head_mask"], | |
flat_inputs_embeds, | |
inputs["output_attentions"], | |
inputs["output_hidden_states"], | |
return_dict=inputs["return_dict"], | |
training=inputs["training"], | |
) | |
logits = self.sequence_summary(outputs[0], training=inputs["training"]) | |
logits = self.classifier(logits) | |
reshaped_logits = tf.reshape(logits, (-1, num_choices)) | |
loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], reshaped_logits) | |
if not inputs["return_dict"]: | |
output = (reshaped_logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return TFMultipleChoiceModelOutput( | |
loss=loss, | |
logits=reshaped_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def serving(self, inputs): | |
output = self.call(inputs) | |
return self.serving_output(output) | |
def serving_output(self, output): | |
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None | |
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None | |
return TFMultipleChoiceModelOutput(logits=output.logits, hidden_states=hs, attentions=attns) | |
class TFConvBertForTokenClassification(TFConvBertPreTrainedModel, TFTokenClassificationLoss): | |
def __init__(self, config, *inputs, **kwargs): | |
super().__init__(config, *inputs, **kwargs) | |
self.num_labels = config.num_labels | |
self.convbert = TFConvBertMainLayer(config, name="convbert") | |
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) | |
self.classifier = tf.keras.layers.Dense( | |
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" | |
) | |
def call( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
labels=None, | |
training=False, | |
**kwargs, | |
): | |
r""" | |
labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - | |
1]``. | |
""" | |
inputs = input_processing( | |
func=self.call, | |
config=self.config, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
labels=labels, | |
training=training, | |
kwargs_call=kwargs, | |
) | |
outputs = self.convbert( | |
inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
token_type_ids=inputs["token_type_ids"], | |
position_ids=inputs["position_ids"], | |
head_mask=inputs["head_mask"], | |
inputs_embeds=inputs["inputs_embeds"], | |
output_attentions=inputs["output_attentions"], | |
output_hidden_states=inputs["output_hidden_states"], | |
return_dict=inputs["return_dict"], | |
training=inputs["training"], | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output, training=inputs["training"]) | |
logits = self.classifier(sequence_output) | |
loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) | |
if not inputs["return_dict"]: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return TFTokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def serving_output(self, output): | |
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None | |
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None | |
return TFTokenClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns) | |
class TFConvBertForQuestionAnswering(TFConvBertPreTrainedModel, TFQuestionAnsweringLoss): | |
def __init__(self, config, *inputs, **kwargs): | |
super().__init__(config, *inputs, **kwargs) | |
self.num_labels = config.num_labels | |
self.convbert = TFConvBertMainLayer(config, name="convbert") | |
self.qa_outputs = tf.keras.layers.Dense( | |
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" | |
) | |
def call( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
token_type_ids=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
start_positions=None, | |
end_positions=None, | |
training=False, | |
**kwargs, | |
): | |
r""" | |
start_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the | |
sequence are not taken into account for computing the loss. | |
end_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the | |
sequence are not taken into account for computing the loss. | |
""" | |
inputs = input_processing( | |
func=self.call, | |
config=self.config, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
start_positions=start_positions, | |
end_positions=end_positions, | |
training=training, | |
kwargs_call=kwargs, | |
) | |
outputs = self.convbert( | |
inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
token_type_ids=inputs["token_type_ids"], | |
position_ids=inputs["position_ids"], | |
head_mask=inputs["head_mask"], | |
inputs_embeds=inputs["inputs_embeds"], | |
output_attentions=inputs["output_attentions"], | |
output_hidden_states=inputs["output_hidden_states"], | |
return_dict=inputs["return_dict"], | |
training=inputs["training"], | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = tf.split(logits, 2, axis=-1) | |
start_logits = tf.squeeze(start_logits, axis=-1) | |
end_logits = tf.squeeze(end_logits, axis=-1) | |
loss = None | |
if inputs["start_positions"] is not None and inputs["end_positions"] is not None: | |
labels = {"start_position": inputs["start_positions"]} | |
labels["end_position"] = inputs["end_positions"] | |
loss = self.compute_loss(labels, (start_logits, end_logits)) | |
if not inputs["return_dict"]: | |
output = (start_logits, end_logits) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return TFQuestionAnsweringModelOutput( | |
loss=loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def serving_output(self, output): | |
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None | |
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None | |
return TFQuestionAnsweringModelOutput( | |
start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=hs, attentions=attns | |
) | |