Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2021 T5 Authors and HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Tokenization class for model ByT5.""" | |
import re | |
import warnings | |
from typing import Dict, List, Optional, Tuple | |
from ...tokenization_utils import AddedToken, PreTrainedTokenizer | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class ByT5Tokenizer(PreTrainedTokenizer): | |
""" | |
Construct a ByT5 tokenizer. ByT5 simply uses raw bytes utf-8 encoding. | |
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods. | |
Users should refer to this superclass for more information regarding those methods. | |
Args: | |
eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): | |
The end of sequence token. | |
.. note:: | |
When building a sequence using special tokens, this is not the token that is used for the end of | |
sequence. The token used is the :obj:`sep_token`. | |
unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`): | |
The token used for padding, for example when batching sequences of different lengths. | |
extra_ids (:obj:`int`, `optional`, defaults to 100): | |
Add a number of extra ids added to the end of the vocabulary for use as sentinels. These tokens are | |
accessible as "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. Extra tokens are | |
indexed from the end of the vocabulary up to beginning ("<extra_id_0>" is the last token in the vocabulary | |
like in ByT5 preprocessing see `here | |
<https://github.com/google-research/text-to-text-transfer-transformer/blob/9fd7b14a769417be33bc6c850f9598764913c833/t5/data/preprocessors.py#L2117>`__). | |
additional_special_tokens (:obj:`List[str]`, `optional`): | |
Additional special tokens used by the tokenizer. | |
""" | |
model_input_names = ["input_ids", "attention_mask"] | |
def __init__( | |
self, | |
eos_token="</s>", | |
unk_token="<unk>", | |
pad_token="<pad>", | |
extra_ids=125, | |
additional_special_tokens=None, | |
**kwargs | |
) -> None: | |
# Add extra_ids to the special token list | |
if extra_ids > 0 and additional_special_tokens is None: | |
additional_special_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)] | |
elif extra_ids > 0 and additional_special_tokens is not None: | |
# Check that we have the right number of extra_id special tokens | |
extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens))) | |
if extra_tokens != extra_ids: | |
raise ValueError( | |
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are provided to ByT5Tokenizer. " | |
"In this case the additional_special_tokens must include the extra_ids tokens" | |
) | |
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token | |
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token | |
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token | |
super().__init__( | |
eos_token=eos_token, | |
unk_token=unk_token, | |
pad_token=pad_token, | |
extra_ids=extra_ids, | |
additional_special_tokens=additional_special_tokens, | |
**kwargs, | |
) | |
# define special tokens dict | |
self.special_tokens_encoder: Dict[int, str] = { | |
self.pad_token: 0, | |
self.eos_token: 1, | |
self.unk_token: 2, | |
} | |
self.special_tokens_decoder: Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} | |
self._num_special_tokens = len(self.special_tokens_encoder) | |
self._utf_vocab_size = 2 ** 8 # utf is 8 bits | |
self._extra_ids = extra_ids | |
def vocab_size(self): | |
return self._utf_vocab_size + self._num_special_tokens + self._extra_ids | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer ``prepare_for_model`` method. | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of IDs. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
# normal case: some special tokens | |
if token_ids_1 is None: | |
return ([0] * len(token_ids_0)) + [1] | |
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] | |
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]: | |
"""Do not add eos again if user already added it.""" | |
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id: | |
warnings.warn( | |
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated eos tokens being added." | |
) | |
return token_ids | |
else: | |
return token_ids + [self.eos_token_id] | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Create a mask from the two sequences passed to be used in a sequence-pair classification task. ByT5 does not | |
make use of token type ids, therefore a list of zeros is returned. | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of IDs. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
:obj:`List[int]`: List of zeros. | |
""" | |
eos = [self.eos_token_id] | |
if token_ids_1 is None: | |
return len(token_ids_0 + eos) * [0] | |
return len(token_ids_0 + eos + token_ids_1 + eos) * [0] | |
def build_inputs_with_special_tokens( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
adding special tokens. A sequence has the following format: | |
- single sequence: ``X </s>`` | |
- pair of sequences: ``A </s> B </s>`` | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. | |
""" | |
token_ids_0 = self._add_eos_if_not_present(token_ids_0) | |
if token_ids_1 is None: | |
return token_ids_0 | |
else: | |
token_ids_1 = self._add_eos_if_not_present(token_ids_1) | |
return token_ids_0 + token_ids_1 | |
def _tokenize(self, text: str) -> List[str]: | |
"""Take as input a string and return a list of strings (tokens) for words/sub-words""" | |
def _sub_tokenize(sub_text): | |
character_list = list(sub_text) | |
utf_tokens_lists = [list(char.encode("utf-8")) for char in character_list] | |
sub_tokens = [chr(utf_token) for utf_tokens in utf_tokens_lists for utf_token in utf_tokens] | |
return sub_tokens | |
# split on special characters | |
pattern = f"({'|'.join(self.special_tokens_encoder.keys())})" | |
sub_texts = list(filter(None, re.split(pattern, text))) | |
tokens = [] | |
for sub_text in sub_texts: | |
if sub_text in self.special_tokens_encoder.keys(): | |
tokens += [sub_text] | |
else: | |
tokens += _sub_tokenize(sub_text) | |
return tokens | |
def _convert_token_to_id(self, token): | |
"""Converts a token (str) in an id using the vocab.""" | |
if token.startswith("<extra_id_"): | |
match = re.match(r"<extra_id_(\d+)>", token) | |
num = int(match.group(1)) | |
token_id = self.vocab_size - num - 1 | |
elif token in self.special_tokens_encoder: | |
token_id = self.special_tokens_encoder[token] | |
elif len(token) > 1: | |
# token of length > 1 must be newly added tokens => set them to unk token | |
token_id = self.unk_token_id | |
else: | |
token_id = ord(token) + self._num_special_tokens | |
return token_id | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (str) using the vocab.""" | |
if index < self._num_special_tokens: | |
token = self.special_tokens_decoder[index] | |
elif index < self._utf_vocab_size + self._num_special_tokens: | |
token = chr(index - self._num_special_tokens) | |
else: | |
token = f"<extra_id_{self.vocab_size - 1 - index}>" | |
return token | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (string) in a single string.""" | |
def _convert_sub_string(sub_chars): | |
byte_string = bytes([ord(char) for char in sub_chars]) | |
return byte_string.decode("utf-8", errors="ignore") | |
string = "" | |
sub_chars = [] | |
for token in tokens: | |
# if is special token | |
if len(token) > 1: | |
string += _convert_sub_string(sub_chars) | |
string += token | |
sub_chars = [] | |
else: | |
sub_chars.append(token) | |
# add remaining chars | |
string += _convert_sub_string(sub_chars) | |
return string | |
# ByT5Tokenizer has no vocab file | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
return () | |