Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Fast Tokenization classes for Bert.""" | |
import json | |
from typing import List, Optional, Tuple | |
from tokenizers import normalizers | |
from ...tokenization_utils_fast import PreTrainedTokenizerFast | |
from ...utils import logging | |
from .tokenization_bert import BertTokenizer | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} | |
PRETRAINED_VOCAB_FILES_MAP = { | |
"vocab_file": { | |
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt", | |
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt", | |
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt", | |
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt", | |
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt", | |
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt", | |
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt", | |
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt", | |
"bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt", | |
"bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt", | |
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt", | |
"bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt", | |
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt", | |
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt", | |
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt", | |
"TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt", | |
"TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt", | |
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt", | |
}, | |
"tokenizer_file": { | |
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json", | |
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json", | |
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json", | |
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json", | |
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json", | |
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json", | |
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json", | |
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json", | |
"bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json", | |
"bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json", | |
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json", | |
"bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json", | |
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json", | |
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json", | |
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json", | |
"TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json", | |
"TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json", | |
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json", | |
}, | |
} | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
"bert-base-uncased": 512, | |
"bert-large-uncased": 512, | |
"bert-base-cased": 512, | |
"bert-large-cased": 512, | |
"bert-base-multilingual-uncased": 512, | |
"bert-base-multilingual-cased": 512, | |
"bert-base-chinese": 512, | |
"bert-base-german-cased": 512, | |
"bert-large-uncased-whole-word-masking": 512, | |
"bert-large-cased-whole-word-masking": 512, | |
"bert-large-uncased-whole-word-masking-finetuned-squad": 512, | |
"bert-large-cased-whole-word-masking-finetuned-squad": 512, | |
"bert-base-cased-finetuned-mrpc": 512, | |
"bert-base-german-dbmdz-cased": 512, | |
"bert-base-german-dbmdz-uncased": 512, | |
"TurkuNLP/bert-base-finnish-cased-v1": 512, | |
"TurkuNLP/bert-base-finnish-uncased-v1": 512, | |
"wietsedv/bert-base-dutch-cased": 512, | |
} | |
PRETRAINED_INIT_CONFIGURATION = { | |
"bert-base-uncased": {"do_lower_case": True}, | |
"bert-large-uncased": {"do_lower_case": True}, | |
"bert-base-cased": {"do_lower_case": False}, | |
"bert-large-cased": {"do_lower_case": False}, | |
"bert-base-multilingual-uncased": {"do_lower_case": True}, | |
"bert-base-multilingual-cased": {"do_lower_case": False}, | |
"bert-base-chinese": {"do_lower_case": False}, | |
"bert-base-german-cased": {"do_lower_case": False}, | |
"bert-large-uncased-whole-word-masking": {"do_lower_case": True}, | |
"bert-large-cased-whole-word-masking": {"do_lower_case": False}, | |
"bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, | |
"bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, | |
"bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, | |
"bert-base-german-dbmdz-cased": {"do_lower_case": False}, | |
"bert-base-german-dbmdz-uncased": {"do_lower_case": True}, | |
"TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False}, | |
"TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True}, | |
"wietsedv/bert-base-dutch-cased": {"do_lower_case": False}, | |
} | |
class BertTokenizerFast(PreTrainedTokenizerFast): | |
r""" | |
Construct a "fast" BERT tokenizer (backed by HuggingFace's `tokenizers` library). Based on WordPiece. | |
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main | |
methods. Users should refer to this superclass for more information regarding those methods. | |
Args: | |
vocab_file (:obj:`str`): | |
File containing the vocabulary. | |
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Whether or not to lowercase the input when tokenizing. | |
unk_token (:obj:`str`, `optional`, defaults to :obj:`"[UNK]"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. | |
sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`): | |
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for | |
sequence classification or for a text and a question for question answering. It is also used as the last | |
token of a sequence built with special tokens. | |
pad_token (:obj:`str`, `optional`, defaults to :obj:`"[PAD]"`): | |
The token used for padding, for example when batching sequences of different lengths. | |
cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`): | |
The classifier token which is used when doing sequence classification (classification of the whole sequence | |
instead of per-token classification). It is the first token of the sequence when built with special tokens. | |
mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`): | |
The token used for masking values. This is the token used when training this model with masked language | |
modeling. This is the token which the model will try to predict. | |
clean_text (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Whether or not to clean the text before tokenization by removing any control characters and replacing all | |
whitespaces by the classic one. | |
tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see `this | |
issue <https://github.com/huggingface/transformers/issues/328>`__). | |
strip_accents: (:obj:`bool`, `optional`): | |
Whether or not to strip all accents. If this option is not specified, then it will be determined by the | |
value for :obj:`lowercase` (as in the original BERT). | |
wordpieces_prefix: (:obj:`str`, `optional`, defaults to :obj:`"##"`): | |
The prefix for subwords. | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
slow_tokenizer_class = BertTokenizer | |
def __init__( | |
self, | |
vocab_file=None, | |
tokenizer_file=None, | |
do_lower_case=True, | |
unk_token="[UNK]", | |
sep_token="[SEP]", | |
pad_token="[PAD]", | |
cls_token="[CLS]", | |
mask_token="[MASK]", | |
tokenize_chinese_chars=True, | |
strip_accents=None, | |
**kwargs | |
): | |
super().__init__( | |
vocab_file, | |
tokenizer_file=tokenizer_file, | |
do_lower_case=do_lower_case, | |
unk_token=unk_token, | |
sep_token=sep_token, | |
pad_token=pad_token, | |
cls_token=cls_token, | |
mask_token=mask_token, | |
tokenize_chinese_chars=tokenize_chinese_chars, | |
strip_accents=strip_accents, | |
**kwargs, | |
) | |
pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) | |
if ( | |
pre_tok_state.get("lowercase", do_lower_case) != do_lower_case | |
or pre_tok_state.get("strip_accents", strip_accents) != strip_accents | |
): | |
pre_tok_class = getattr(normalizers, pre_tok_state.pop("type")) | |
pre_tok_state["lowercase"] = do_lower_case | |
pre_tok_state["strip_accents"] = strip_accents | |
self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state) | |
self.do_lower_case = do_lower_case | |
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): | |
""" | |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
adding special tokens. A BERT sequence has the following format: | |
- single sequence: ``[CLS] X [SEP]`` | |
- pair of sequences: ``[CLS] A [SEP] B [SEP]`` | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. | |
""" | |
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] | |
if token_ids_1: | |
output += token_ids_1 + [self.sep_token_id] | |
return output | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence | |
pair mask has the following format: | |
:: | |
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | |
| first sequence | second sequence | | |
If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s). | |
Args: | |
token_ids_0 (:obj:`List[int]`): | |
List of IDs. | |
token_ids_1 (:obj:`List[int]`, `optional`): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
:obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given | |
sequence(s). | |
""" | |
sep = [self.sep_token_id] | |
cls = [self.cls_token_id] | |
if token_ids_1 is None: | |
return len(cls + token_ids_0 + sep) * [0] | |
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
files = self._tokenizer.model.save(save_directory, name=filename_prefix) | |
return tuple(files) | |