Spaces:
Sleeping
Sleeping
| # coding=utf-8 | |
| # Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License | |
| """ Tokenization classes for the BARThez model.""" | |
| import os | |
| from shutil import copyfile | |
| from typing import List, Optional, Tuple | |
| from ...file_utils import is_sentencepiece_available | |
| from ...tokenization_utils import AddedToken | |
| from ...tokenization_utils_fast import PreTrainedTokenizerFast | |
| from ...utils import logging | |
| if is_sentencepiece_available(): | |
| from .tokenization_barthez import BarthezTokenizer | |
| else: | |
| BarthezTokenizer = None | |
| logger = logging.get_logger(__name__) | |
| VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} | |
| PRETRAINED_VOCAB_FILES_MAP = { | |
| "vocab_file": { | |
| "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", | |
| "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", | |
| "moussaKam/barthez-orangesum-title": "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model", | |
| }, | |
| "tokenizer_file": { | |
| "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", | |
| "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", | |
| "moussaKam/barthez-orangesum-title": "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json", | |
| }, | |
| } | |
| PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
| "moussaKam/mbarthez": 1024, | |
| "moussaKam/barthez": 1024, | |
| "moussaKam/barthez-orangesum-title": 1024, | |
| } | |
| SPIECE_UNDERLINE = "▁" | |
| class BarthezTokenizerFast(PreTrainedTokenizerFast): | |
| """ | |
| Adapted from :class:`~transformers.CamembertTokenizer` and :class:`~transformers.BartTokenizer`. Construct a "fast" | |
| BARThez tokenizer. Based on `SentencePiece <https://github.com/google/sentencepiece>`__. | |
| This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main | |
| methods. Users should refer to this superclass for more information regarding those methods. | |
| Args: | |
| vocab_file (:obj:`str`): | |
| `SentencePiece <https://github.com/google/sentencepiece>`__ file (generally has a `.spm` extension) that | |
| contains the vocabulary necessary to instantiate a tokenizer. | |
| bos_token (:obj:`str`, `optional`, defaults to :obj:`"<s>"`): | |
| The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. | |
| .. note:: | |
| When building a sequence using special tokens, this is not the token that is used for the beginning of | |
| sequence. The token used is the :obj:`cls_token`. | |
| eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): | |
| The end of sequence token. | |
| .. note:: | |
| When building a sequence using special tokens, this is not the token that is used for the end of | |
| sequence. The token used is the :obj:`sep_token`. | |
| sep_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): | |
| The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for | |
| sequence classification or for a text and a question for question answering. It is also used as the last | |
| token of a sequence built with special tokens. | |
| cls_token (:obj:`str`, `optional`, defaults to :obj:`"<s>"`): | |
| The classifier token which is used when doing sequence classification (classification of the whole sequence | |
| instead of per-token classification). It is the first token of the sequence when built with special tokens. | |
| unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`): | |
| The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
| token instead. | |
| pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`): | |
| The token used for padding, for example when batching sequences of different lengths. | |
| mask_token (:obj:`str`, `optional`, defaults to :obj:`"<mask>"`): | |
| The token used for masking values. This is the token used when training this model with masked language | |
| modeling. This is the token which the model will try to predict. | |
| additional_special_tokens (:obj:`List[str]`, `optional`, defaults to :obj:`["<s>NOTUSED", "</s>NOTUSED"]`): | |
| Additional special tokens used by the tokenizer. | |
| """ | |
| vocab_files_names = VOCAB_FILES_NAMES | |
| pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
| max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
| model_input_names = ["input_ids", "attention_mask"] | |
| slow_tokenizer_class = BarthezTokenizer | |
| def __init__( | |
| self, | |
| vocab_file=None, | |
| tokenizer_file=None, | |
| bos_token="<s>", | |
| eos_token="</s>", | |
| sep_token="</s>", | |
| cls_token="<s>", | |
| unk_token="<unk>", | |
| pad_token="<pad>", | |
| mask_token="<mask>", | |
| **kwargs | |
| ): | |
| # Mask token behave like a normal word, i.e. include the space before it | |
| mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token | |
| super().__init__( | |
| vocab_file, | |
| tokenizer_file=tokenizer_file, | |
| bos_token=bos_token, | |
| eos_token=eos_token, | |
| unk_token=unk_token, | |
| sep_token=sep_token, | |
| cls_token=cls_token, | |
| pad_token=pad_token, | |
| mask_token=mask_token, | |
| **kwargs, | |
| ) | |
| self.vocab_file = vocab_file | |
| def build_inputs_with_special_tokens( | |
| self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
| ) -> List[int]: | |
| """ | |
| Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
| adding special tokens. A BARThez sequence has the following format: | |
| - single sequence: ``<s> X </s>`` | |
| - pair of sequences: ``<s> A </s></s> B </s>`` | |
| Args: | |
| token_ids_0 (:obj:`List[int]`): | |
| List of IDs to which the special tokens will be added. | |
| token_ids_1 (:obj:`List[int]`, `optional`): | |
| Optional second list of IDs for sequence pairs. | |
| Returns: | |
| :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. | |
| """ | |
| if token_ids_1 is None: | |
| return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] | |
| cls = [self.cls_token_id] | |
| sep = [self.sep_token_id] | |
| return cls + token_ids_0 + sep + sep + token_ids_1 + sep | |
| def create_token_type_ids_from_sequences( | |
| self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
| ) -> List[int]: | |
| """ | |
| Create a mask from the two sequences passed to be used in a sequence-pair classification task. | |
| Args: | |
| token_ids_0 (:obj:`List[int]`): | |
| List of IDs. | |
| token_ids_1 (:obj:`List[int]`, `optional`): | |
| Optional second list of IDs for sequence pairs. | |
| Returns: | |
| :obj:`List[int]`: List of zeros. | |
| """ | |
| sep = [self.sep_token_id] | |
| cls = [self.cls_token_id] | |
| if token_ids_1 is None: | |
| return len(cls + token_ids_0 + sep) * [0] | |
| return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] | |
| def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
| if not os.path.isdir(save_directory): | |
| logger.error(f"Vocabulary path ({save_directory}) should be a directory") | |
| return | |
| out_vocab_file = os.path.join( | |
| save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | |
| ) | |
| if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): | |
| copyfile(self.vocab_file, out_vocab_file) | |
| return (out_vocab_file,) | |