Spaces:
Sleeping
Sleeping
# flake8: noqa | |
# There's no way to ignore "F401 '...' imported but unused" warnings in this | |
# module, but to preserve other warnings. So, don't check this module at all. | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING | |
from ...file_utils import ( | |
_LazyModule, | |
is_sentencepiece_available, | |
is_tf_available, | |
is_tokenizers_available, | |
is_torch_available, | |
) | |
_import_structure = { | |
"configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], | |
} | |
if is_sentencepiece_available(): | |
_import_structure["tokenization_albert"] = ["AlbertTokenizer"] | |
if is_tokenizers_available(): | |
_import_structure["tokenization_albert_fast"] = ["AlbertTokenizerFast"] | |
if is_torch_available(): | |
_import_structure["modeling_albert"] = [ | |
"ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"AlbertForMaskedLM", | |
"AlbertForMultipleChoice", | |
"AlbertForPreTraining", | |
"AlbertForQuestionAnswering", | |
"AlbertForSequenceClassification", | |
"AlbertForTokenClassification", | |
"AlbertModel", | |
"AlbertPreTrainedModel", | |
"load_tf_weights_in_albert", | |
] | |
if is_tf_available(): | |
_import_structure["modeling_tf_albert"] = [ | |
"TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
"TFAlbertForMaskedLM", | |
"TFAlbertForMultipleChoice", | |
"TFAlbertForPreTraining", | |
"TFAlbertForQuestionAnswering", | |
"TFAlbertForSequenceClassification", | |
"TFAlbertForTokenClassification", | |
"TFAlbertMainLayer", | |
"TFAlbertModel", | |
"TFAlbertPreTrainedModel", | |
] | |
if TYPE_CHECKING: | |
from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig | |
if is_sentencepiece_available(): | |
from .tokenization_albert import AlbertTokenizer | |
if is_tokenizers_available(): | |
from .tokenization_albert_fast import AlbertTokenizerFast | |
if is_torch_available(): | |
from .modeling_albert import ( | |
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
AlbertForMaskedLM, | |
AlbertForMultipleChoice, | |
AlbertForPreTraining, | |
AlbertForQuestionAnswering, | |
AlbertForSequenceClassification, | |
AlbertForTokenClassification, | |
AlbertModel, | |
AlbertPreTrainedModel, | |
load_tf_weights_in_albert, | |
) | |
if is_tf_available(): | |
from .modeling_tf_albert import ( | |
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFAlbertForMaskedLM, | |
TFAlbertForMultipleChoice, | |
TFAlbertForPreTraining, | |
TFAlbertForQuestionAnswering, | |
TFAlbertForSequenceClassification, | |
TFAlbertForTokenClassification, | |
TFAlbertMainLayer, | |
TFAlbertModel, | |
TFAlbertPreTrainedModel, | |
) | |
else: | |
import sys | |
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) | |