Spaces:
Sleeping
Sleeping
| # flake8: noqa | |
| # There's no way to ignore "F401 '...' imported but unused" warnings in this | |
| # module, but to preserve other warnings. So, don't check this module at all. | |
| # Copyright 2020 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import TYPE_CHECKING | |
| from ...file_utils import ( | |
| _LazyModule, | |
| is_sentencepiece_available, | |
| is_tf_available, | |
| is_tokenizers_available, | |
| is_torch_available, | |
| ) | |
| _import_structure = { | |
| "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], | |
| } | |
| if is_sentencepiece_available(): | |
| _import_structure["tokenization_albert"] = ["AlbertTokenizer"] | |
| if is_tokenizers_available(): | |
| _import_structure["tokenization_albert_fast"] = ["AlbertTokenizerFast"] | |
| if is_torch_available(): | |
| _import_structure["modeling_albert"] = [ | |
| "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
| "AlbertForMaskedLM", | |
| "AlbertForMultipleChoice", | |
| "AlbertForPreTraining", | |
| "AlbertForQuestionAnswering", | |
| "AlbertForSequenceClassification", | |
| "AlbertForTokenClassification", | |
| "AlbertModel", | |
| "AlbertPreTrainedModel", | |
| "load_tf_weights_in_albert", | |
| ] | |
| if is_tf_available(): | |
| _import_structure["modeling_tf_albert"] = [ | |
| "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", | |
| "TFAlbertForMaskedLM", | |
| "TFAlbertForMultipleChoice", | |
| "TFAlbertForPreTraining", | |
| "TFAlbertForQuestionAnswering", | |
| "TFAlbertForSequenceClassification", | |
| "TFAlbertForTokenClassification", | |
| "TFAlbertMainLayer", | |
| "TFAlbertModel", | |
| "TFAlbertPreTrainedModel", | |
| ] | |
| if TYPE_CHECKING: | |
| from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig | |
| if is_sentencepiece_available(): | |
| from .tokenization_albert import AlbertTokenizer | |
| if is_tokenizers_available(): | |
| from .tokenization_albert_fast import AlbertTokenizerFast | |
| if is_torch_available(): | |
| from .modeling_albert import ( | |
| ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
| AlbertForMaskedLM, | |
| AlbertForMultipleChoice, | |
| AlbertForPreTraining, | |
| AlbertForQuestionAnswering, | |
| AlbertForSequenceClassification, | |
| AlbertForTokenClassification, | |
| AlbertModel, | |
| AlbertPreTrainedModel, | |
| load_tf_weights_in_albert, | |
| ) | |
| if is_tf_available(): | |
| from .modeling_tf_albert import ( | |
| TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
| TFAlbertForMaskedLM, | |
| TFAlbertForMultipleChoice, | |
| TFAlbertForPreTraining, | |
| TFAlbertForQuestionAnswering, | |
| TFAlbertForSequenceClassification, | |
| TFAlbertForTokenClassification, | |
| TFAlbertMainLayer, | |
| TFAlbertModel, | |
| TFAlbertPreTrainedModel, | |
| ) | |
| else: | |
| import sys | |
| sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) | |