Spaces:
Sleeping
Sleeping
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import os | |
| import re | |
| import warnings | |
| from contextlib import contextmanager | |
| from dataclasses import dataclass | |
| from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union | |
| import torch | |
| from torch import Tensor, device, nn | |
| from torch.nn import CrossEntropyLoss | |
| from .activations import get_activation | |
| from .configuration_utils import PretrainedConfig | |
| from .deepspeed import deepspeed_config, is_deepspeed_zero3_enabled | |
| from .file_utils import ( | |
| DUMMY_INPUTS, | |
| FLAX_WEIGHTS_NAME, | |
| TF2_WEIGHTS_NAME, | |
| TF_WEIGHTS_NAME, | |
| WEIGHTS_NAME, | |
| ModelOutput, | |
| PushToHubMixin, | |
| cached_path, | |
| copy_func, | |
| hf_bucket_url, | |
| is_offline_mode, | |
| is_remote_url, | |
| replace_return_docstrings, | |
| ) | |
| from .generation_utils import GenerationMixin | |
| from .utils import logging | |
| logger = logging.get_logger(__name__) | |
| _init_weights = True | |
| def no_init_weights(_enable=True): | |
| """ | |
| Context manager to globally disable weight initialization to speed up loading large models. | |
| TODO(Patrick): Delete safety argument `_enable=True` at next major version. . | |
| """ | |
| global _init_weights | |
| if _enable: | |
| _init_weights = False | |
| try: | |
| yield | |
| finally: | |
| _init_weights = True | |
| try: | |
| from torch.nn import Identity | |
| except ImportError: | |
| # Older PyTorch compatibility | |
| class Identity(nn.Module): | |
| r"""A placeholder identity operator that is argument-insensitive.""" | |
| def __init__(self, *args, **kwargs): | |
| super().__init__() | |
| def forward(self, input): | |
| return input | |
| def find_pruneable_heads_and_indices( | |
| heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int] | |
| ) -> Tuple[Set[int], torch.LongTensor]: | |
| """ | |
| Finds the heads and their indices taking :obj:`already_pruned_heads` into account. | |
| Args: | |
| heads (:obj:`List[int]`): List of the indices of heads to prune. | |
| n_heads (:obj:`int`): The number of heads in the model. | |
| head_size (:obj:`int`): The size of each head. | |
| already_pruned_heads (:obj:`Set[int]`): A set of already pruned heads. | |
| Returns: | |
| :obj:`Tuple[Set[int], torch.LongTensor]`: A tuple with the remaining heads and their corresponding indices. | |
| """ | |
| mask = torch.ones(n_heads, head_size) | |
| heads = set(heads) - already_pruned_heads # Convert to set and remove already pruned heads | |
| for head in heads: | |
| # Compute how many pruned heads are before the head and move the index accordingly | |
| head = head - sum(1 if h < head else 0 for h in already_pruned_heads) | |
| mask[head] = 0 | |
| mask = mask.view(-1).contiguous().eq(1) | |
| index: torch.LongTensor = torch.arange(len(mask))[mask].long() | |
| return heads, index | |
| def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]): | |
| try: | |
| return next(parameter.parameters()).device | |
| except StopIteration: | |
| # For nn.DataParallel compatibility in PyTorch 1.5 | |
| def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]: | |
| tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] | |
| return tuples | |
| gen = parameter._named_members(get_members_fn=find_tensor_attributes) | |
| first_tuple = next(gen) | |
| return first_tuple[1].device | |
| def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]): | |
| try: | |
| return next(parameter.parameters()).dtype | |
| except StopIteration: | |
| # For nn.DataParallel compatibility in PyTorch 1.5 | |
| def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]: | |
| tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] | |
| return tuples | |
| gen = parameter._named_members(get_members_fn=find_tensor_attributes) | |
| first_tuple = next(gen) | |
| return first_tuple[1].dtype | |
| class ModuleUtilsMixin: | |
| """ | |
| A few utilities for :obj:`torch.nn.Modules`, to be used as a mixin. | |
| """ | |
| def _hook_rss_memory_pre_forward(module, *args, **kwargs): | |
| try: | |
| import psutil | |
| except (ImportError): | |
| raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.") | |
| process = psutil.Process(os.getpid()) | |
| mem = process.memory_info() | |
| module.mem_rss_pre_forward = mem.rss | |
| return None | |
| def _hook_rss_memory_post_forward(module, *args, **kwargs): | |
| try: | |
| import psutil | |
| except (ImportError): | |
| raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.") | |
| process = psutil.Process(os.getpid()) | |
| mem = process.memory_info() | |
| module.mem_rss_post_forward = mem.rss | |
| mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward | |
| module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0) | |
| return None | |
| def add_memory_hooks(self): | |
| """ | |
| Add a memory hook before and after each sub-module forward pass to record increase in memory consumption. | |
| Increase in memory consumption is stored in a :obj:`mem_rss_diff` attribute for each module and can be reset to | |
| zero with :obj:`model.reset_memory_hooks_state()`. | |
| """ | |
| for module in self.modules(): | |
| module.register_forward_pre_hook(self._hook_rss_memory_pre_forward) | |
| module.register_forward_hook(self._hook_rss_memory_post_forward) | |
| self.reset_memory_hooks_state() | |
| def reset_memory_hooks_state(self): | |
| """ | |
| Reset the :obj:`mem_rss_diff` attribute of each module (see | |
| :func:`~transformers.modeling_utils.ModuleUtilsMixin.add_memory_hooks`). | |
| """ | |
| for module in self.modules(): | |
| module.mem_rss_diff = 0 | |
| module.mem_rss_post_forward = 0 | |
| module.mem_rss_pre_forward = 0 | |
| def device(self) -> device: | |
| """ | |
| :obj:`torch.device`: The device on which the module is (assuming that all the module parameters are on the same | |
| device). | |
| """ | |
| return get_parameter_device(self) | |
| def dtype(self) -> torch.dtype: | |
| """ | |
| :obj:`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). | |
| """ | |
| return get_parameter_dtype(self) | |
| def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor: | |
| """ | |
| Invert an attention mask (e.g., switches 0. and 1.). | |
| Args: | |
| encoder_attention_mask (:obj:`torch.Tensor`): An attention mask. | |
| Returns: | |
| :obj:`torch.Tensor`: The inverted attention mask. | |
| """ | |
| if encoder_attention_mask.dim() == 3: | |
| encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] | |
| if encoder_attention_mask.dim() == 2: | |
| encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] | |
| # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition | |
| # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow | |
| # /transformer/transformer_layers.py#L270 | |
| # encoder_extended_attention_mask = (encoder_extended_attention_mask == | |
| # encoder_extended_attention_mask.transpose(-1, -2)) | |
| encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility | |
| if self.dtype == torch.float16: | |
| encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e4 | |
| elif self.dtype == torch.float32: | |
| encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9 | |
| else: | |
| raise ValueError( | |
| f"{self.dtype} not recognized. `dtype` should be set to either `torch.float32` or `torch.float16`" | |
| ) | |
| return encoder_extended_attention_mask | |
| def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device) -> Tensor: | |
| """ | |
| Makes broadcastable attention and causal masks so that future and masked tokens are ignored. | |
| Arguments: | |
| attention_mask (:obj:`torch.Tensor`): | |
| Mask with ones indicating tokens to attend to, zeros for tokens to ignore. | |
| input_shape (:obj:`Tuple[int]`): | |
| The shape of the input to the model. | |
| device: (:obj:`torch.device`): | |
| The device of the input to the model. | |
| Returns: | |
| :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. | |
| """ | |
| # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
| # ourselves in which case we just need to make it broadcastable to all heads. | |
| if attention_mask.dim() == 3: | |
| extended_attention_mask = attention_mask[:, None, :, :] | |
| elif attention_mask.dim() == 2: | |
| # Provided a padding mask of dimensions [batch_size, seq_length] | |
| # - if the model is a decoder, apply a causal mask in addition to the padding mask | |
| # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
| if self.config.is_decoder: | |
| batch_size, seq_length = input_shape | |
| seq_ids = torch.arange(seq_length, device=device) | |
| causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] | |
| # in case past_key_values are used we need to add a prefix ones mask to the causal mask | |
| # causal and attention masks must have same type with pytorch version < 1.3 | |
| causal_mask = causal_mask.to(attention_mask.dtype) | |
| if causal_mask.shape[1] < attention_mask.shape[1]: | |
| prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] | |
| causal_mask = torch.cat( | |
| [ | |
| torch.ones( | |
| (batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype | |
| ), | |
| causal_mask, | |
| ], | |
| axis=-1, | |
| ) | |
| extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] | |
| else: | |
| extended_attention_mask = attention_mask[:, None, None, :] | |
| else: | |
| raise ValueError( | |
| f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})" | |
| ) | |
| # Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
| # masked positions, this operation will create a tensor which is 0.0 for | |
| # positions we want to attend and -10000.0 for masked positions. | |
| # Since we are adding it to the raw scores before the softmax, this is | |
| # effectively the same as removing these entirely. | |
| extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility | |
| extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
| return extended_attention_mask | |
| def get_head_mask( | |
| self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False | |
| ) -> Tensor: | |
| """ | |
| Prepare the head mask if needed. | |
| Args: | |
| head_mask (:obj:`torch.Tensor` with shape :obj:`[num_heads]` or :obj:`[num_hidden_layers x num_heads]`, `optional`): | |
| The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard). | |
| num_hidden_layers (:obj:`int`): | |
| The number of hidden layers in the model. | |
| is_attention_chunked: (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| Whether or not the attentions scores are computed by chunks or not. | |
| Returns: | |
| :obj:`torch.Tensor` with shape :obj:`[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or | |
| list with :obj:`[None]` for each layer. | |
| """ | |
| if head_mask is not None: | |
| head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers) | |
| if is_attention_chunked is True: | |
| head_mask = head_mask.unsqueeze(-1) | |
| else: | |
| head_mask = [None] * num_hidden_layers | |
| return head_mask | |
| def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers): | |
| """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]""" | |
| if head_mask.dim() == 1: | |
| head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
| head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1) | |
| elif head_mask.dim() == 2: | |
| head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer | |
| assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}" | |
| head_mask = head_mask.to(dtype=self.dtype) # switch to float if need + fp16 compatibility | |
| return head_mask | |
| def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int: | |
| """ | |
| Get number of (optionally, trainable or non-embeddings) parameters in the module. | |
| Args: | |
| only_trainable (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| Whether or not to return only the number of trainable parameters | |
| exclude_embeddings (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| Whether or not to return only the number of non-embeddings parameters | |
| Returns: | |
| :obj:`int`: The number of parameters. | |
| """ | |
| if exclude_embeddings: | |
| embedding_param_names = [ | |
| f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding) | |
| ] | |
| non_embedding_parameters = [ | |
| parameter for name, parameter in self.named_parameters() if name not in embedding_param_names | |
| ] | |
| return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable) | |
| else: | |
| return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable) | |
| def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int: | |
| """ | |
| Helper function to estimate the total number of tokens from the model inputs. | |
| Args: | |
| inputs (:obj:`dict`): The model inputs. | |
| Returns: | |
| :obj:`int`: The total number of tokens. | |
| """ | |
| token_inputs = [tensor for key, tensor in input_dict.items() if "input" in key] | |
| if token_inputs: | |
| return sum([token_input.numel() for token_input in token_inputs]) | |
| else: | |
| warnings.warn( | |
| "Could not estimate the number of tokens of the input, floating-point operations will not be computed" | |
| ) | |
| return 0 | |
| def floating_point_ops( | |
| self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True | |
| ) -> int: | |
| """ | |
| Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a | |
| batch with this transformer model. Default approximation neglects the quadratic dependency on the number of | |
| tokens (valid if :obj:`12 * d_model << sequence_length`) as laid out in `this paper | |
| <https://arxiv.org/pdf/2001.08361.pdf>`__ section 2.1. Should be overridden for transformers with parameter | |
| re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths. | |
| Args: | |
| batch_size (:obj:`int`): | |
| The batch size for the forward pass. | |
| sequence_length (:obj:`int`): | |
| The number of tokens in each line of the batch. | |
| exclude_embeddings (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
| Whether or not to count embedding and softmax operations. | |
| Returns: | |
| :obj:`int`: The number of floating-point operations. | |
| """ | |
| return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings) | |
| class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin): | |
| r""" | |
| Base class for all models. | |
| :class:`~transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods | |
| for loading, downloading and saving models as well as a few methods common to all models to: | |
| * resize the input embeddings, | |
| * prune heads in the self-attention heads. | |
| Class attributes (overridden by derived classes): | |
| - **config_class** (:class:`~transformers.PretrainedConfig`) -- A subclass of | |
| :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture. | |
| - **load_tf_weights** (:obj:`Callable`) -- A python `method` for loading a TensorFlow checkpoint in a PyTorch | |
| model, taking as arguments: | |
| - **model** (:class:`~transformers.PreTrainedModel`) -- An instance of the model on which to load the | |
| TensorFlow checkpoint. | |
| - **config** (:class:`~transformers.PreTrainedConfig`) -- An instance of the configuration associated to | |
| the model. | |
| - **path** (:obj:`str`) -- A path to the TensorFlow checkpoint. | |
| - **base_model_prefix** (:obj:`str`) -- A string indicating the attribute associated to the base model in | |
| derived classes of the same architecture adding modules on top of the base model. | |
| - **is_parallelizable** (:obj:`bool`) -- A flag indicating whether this model supports model parallelization. | |
| """ | |
| config_class = None | |
| base_model_prefix = "" | |
| # a list of re pattern of tensor names to ignore from the model when loading the model weights | |
| # (and avoid unnecessary warnings). | |
| _keys_to_ignore_on_load_missing = None | |
| # a list of re pattern of tensor names to ignore from the weights when loading the model weights | |
| # (and avoid unnecessary warnings). | |
| _keys_to_ignore_on_load_unexpected = None | |
| # a list of of tensor names to ignore when saving the model (useful for keys that aren't | |
| # trained, but which are deterministic, or tied variables) | |
| _keys_to_ignore_on_save = None | |
| is_parallelizable = False | |
| def dummy_inputs(self) -> Dict[str, torch.Tensor]: | |
| """ | |
| :obj:`Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network. | |
| """ | |
| return {"input_ids": torch.tensor(DUMMY_INPUTS)} | |
| def __init__(self, config: PretrainedConfig, *inputs, **kwargs): | |
| super().__init__() | |
| if not isinstance(config, PretrainedConfig): | |
| raise ValueError( | |
| f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class " | |
| "`PretrainedConfig`. To create a model from a pretrained model use " | |
| f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`" | |
| ) | |
| # Save config and origin of the pretrained weights if given in model | |
| self.config = config | |
| self.name_or_path = config.name_or_path | |
| def _from_config(cls, config, **kwargs): | |
| """ | |
| All context managers that the model should be initialized under go here. | |
| Args: | |
| torch_dtype (:obj:`torch.dtype`, `optional`): | |
| Override the default ``torch.dtype`` and load the model under this dtype. | |
| """ | |
| torch_dtype = kwargs.pop("torch_dtype", None) | |
| # override default dtype if needed | |
| dtype_orig = None | |
| if torch_dtype is not None: | |
| dtype_orig = cls._set_default_torch_dtype(torch_dtype) | |
| if is_deepspeed_zero3_enabled(): | |
| import deepspeed | |
| logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model") | |
| # this immediately partitions the model across all gpus, to avoid the overhead in time | |
| # and memory copying it on CPU or each GPU first | |
| with deepspeed.zero.Init(config=deepspeed_config()): | |
| model = cls(config, **kwargs) | |
| else: | |
| model = cls(config, **kwargs) | |
| # restore default dtype if it was modified | |
| if dtype_orig is not None: | |
| torch.set_default_dtype(dtype_orig) | |
| return model | |
| def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype: | |
| """ | |
| Change the default dtype and return the previous one. This is needed when wanting to instantiate the model | |
| under specific dtype. | |
| Args: | |
| dtype (:obj:`torch.dtype`): | |
| a floating dtype to set to. | |
| Returns: | |
| :obj:`torch.dtype`: the original ``dtype`` that can be used to restore ``torch.set_default_dtype(dtype)`` | |
| if it was modified. If it wasn't, returns :obj:`None`. | |
| Note ``set_default_dtype`` currently only works with floating-point types and asserts if for example, | |
| ``torch.int64`` is passed. So if a non-float ``dtype`` is passed this functions will throw an exception. | |
| """ | |
| if not dtype.is_floating_point: | |
| raise ValueError( | |
| f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype" | |
| ) | |
| logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.") | |
| dtype_orig = torch.get_default_dtype() | |
| torch.set_default_dtype(dtype) | |
| return dtype_orig | |
| def base_model(self) -> nn.Module: | |
| """ | |
| :obj:`torch.nn.Module`: The main body of the model. | |
| """ | |
| return getattr(self, self.base_model_prefix, self) | |
| def get_input_embeddings(self) -> nn.Module: | |
| """ | |
| Returns the model's input embeddings. | |
| Returns: | |
| :obj:`nn.Module`: A torch module mapping vocabulary to hidden states. | |
| """ | |
| base_model = getattr(self, self.base_model_prefix, self) | |
| if base_model is not self: | |
| return base_model.get_input_embeddings() | |
| else: | |
| raise NotImplementedError | |
| def set_input_embeddings(self, value: nn.Module): | |
| """ | |
| Set model's input embeddings. | |
| Args: | |
| value (:obj:`nn.Module`): A module mapping vocabulary to hidden states. | |
| """ | |
| base_model = getattr(self, self.base_model_prefix, self) | |
| if base_model is not self: | |
| base_model.set_input_embeddings(value) | |
| else: | |
| raise NotImplementedError | |
| def get_output_embeddings(self) -> nn.Module: | |
| """ | |
| Returns the model's output embeddings. | |
| Returns: | |
| :obj:`nn.Module`: A torch module mapping hidden states to vocabulary. | |
| """ | |
| return None # Overwrite for models with output embeddings | |
| def _init_weights(self, module): | |
| """ | |
| Initialize the weights. This method should be overridden by derived class. | |
| """ | |
| raise NotImplementedError(f"Make sure `_init_weigths` is implemented for {self.__class__}") | |
| def tie_weights(self): | |
| """ | |
| Tie the weights between the input embeddings and the output embeddings. | |
| If the :obj:`torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning | |
| the weights instead. | |
| """ | |
| output_embeddings = self.get_output_embeddings() | |
| if output_embeddings is not None and self.config.tie_word_embeddings: | |
| self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings()) | |
| if self.config.is_encoder_decoder and self.config.tie_encoder_decoder: | |
| if hasattr(self, self.base_model_prefix): | |
| self = getattr(self, self.base_model_prefix) | |
| self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix) | |
| def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str): | |
| uninitialized_encoder_weights: List[str] = [] | |
| if decoder.__class__ != encoder.__class__: | |
| logger.info( | |
| f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized." | |
| ) | |
| def tie_encoder_to_decoder_recursively( | |
| decoder_pointer: nn.Module, | |
| encoder_pointer: nn.Module, | |
| module_name: str, | |
| uninitialized_encoder_weights: List[str], | |
| depth=0, | |
| ): | |
| assert isinstance(decoder_pointer, nn.Module) and isinstance( | |
| encoder_pointer, nn.Module | |
| ), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module" | |
| if hasattr(decoder_pointer, "weight"): | |
| assert hasattr(encoder_pointer, "weight") | |
| encoder_pointer.weight = decoder_pointer.weight | |
| if hasattr(decoder_pointer, "bias"): | |
| assert hasattr(encoder_pointer, "bias") | |
| encoder_pointer.bias = decoder_pointer.bias | |
| return | |
| encoder_modules = encoder_pointer._modules | |
| decoder_modules = decoder_pointer._modules | |
| if len(decoder_modules) > 0: | |
| assert ( | |
| len(encoder_modules) > 0 | |
| ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}" | |
| all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()]) | |
| encoder_layer_pos = 0 | |
| for name, module in decoder_modules.items(): | |
| if name.isdigit(): | |
| encoder_name = str(int(name) + encoder_layer_pos) | |
| decoder_name = name | |
| if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len( | |
| encoder_modules | |
| ) != len(decoder_modules): | |
| # this can happen if the name corresponds to the position in a list module list of layers | |
| # in this case the decoder has added a cross-attention that the encoder does not have | |
| # thus skip this step and subtract one layer pos from encoder | |
| encoder_layer_pos -= 1 | |
| continue | |
| elif name not in encoder_modules: | |
| continue | |
| elif depth > 500: | |
| raise ValueError( | |
| "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model." | |
| ) | |
| else: | |
| decoder_name = encoder_name = name | |
| tie_encoder_to_decoder_recursively( | |
| decoder_modules[decoder_name], | |
| encoder_modules[encoder_name], | |
| module_name + "/" + name, | |
| uninitialized_encoder_weights, | |
| depth=depth + 1, | |
| ) | |
| all_encoder_weights.remove(module_name + "/" + encoder_name) | |
| uninitialized_encoder_weights += list(all_encoder_weights) | |
| # tie weights recursively | |
| tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights) | |
| if len(uninitialized_encoder_weights) > 0: | |
| logger.warning( | |
| f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}" | |
| ) | |
| def _tie_or_clone_weights(self, output_embeddings, input_embeddings): | |
| """Tie or clone module weights depending of whether we are using TorchScript or not""" | |
| if self.config.torchscript: | |
| output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone()) | |
| else: | |
| output_embeddings.weight = input_embeddings.weight | |
| if getattr(output_embeddings, "bias", None) is not None: | |
| output_embeddings.bias.data = nn.functional.pad( | |
| output_embeddings.bias.data, | |
| ( | |
| 0, | |
| output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0], | |
| ), | |
| "constant", | |
| 0, | |
| ) | |
| if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): | |
| output_embeddings.out_features = input_embeddings.num_embeddings | |
| def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: | |
| """ | |
| Resizes input token embeddings matrix of the model if :obj:`new_num_tokens != config.vocab_size`. | |
| Takes care of tying weights embeddings afterwards if the model class has a :obj:`tie_weights()` method. | |
| Arguments: | |
| new_num_tokens (:obj:`int`, `optional`): | |
| The number of new tokens in the embedding matrix. Increasing the size will add newly initialized | |
| vectors at the end. Reducing the size will remove vectors from the end. If not provided or :obj:`None`, | |
| just returns a pointer to the input tokens :obj:`torch.nn.Embedding` module of the model without doing | |
| anything. | |
| Return: | |
| :obj:`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model. | |
| """ | |
| model_embeds = self._resize_token_embeddings(new_num_tokens) | |
| if new_num_tokens is None: | |
| return model_embeds | |
| # Update base model and current model config | |
| self.config.vocab_size = new_num_tokens | |
| self.vocab_size = new_num_tokens | |
| # Tie weights again if needed | |
| self.tie_weights() | |
| return model_embeds | |
| def _resize_token_embeddings(self, new_num_tokens): | |
| old_embeddings = self.get_input_embeddings() | |
| new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) | |
| self.set_input_embeddings(new_embeddings) | |
| # if word embeddings are not tied, make sure that lm head is resized as well | |
| if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings: | |
| old_lm_head = self.get_output_embeddings() | |
| new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens) | |
| self.set_output_embeddings(new_lm_head) | |
| return self.get_input_embeddings() | |
| def _get_resized_embeddings( | |
| self, old_embeddings: nn.Embedding, new_num_tokens: Optional[int] = None | |
| ) -> nn.Embedding: | |
| """ | |
| Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly | |
| initialized vectors at the end. Reducing the size will remove vectors from the end | |
| Args: | |
| old_embeddings (:obj:`torch.nn.Embedding`): | |
| Old embeddings to be resized. | |
| new_num_tokens (:obj:`int`, `optional`): | |
| New number of tokens in the embedding matrix. | |
| Increasing the size will add newly initialized vectors at the end. Reducing the size will remove | |
| vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens | |
| :obj:`torch.nn.Embedding`` module of the model without doing anything. | |
| Return: | |
| :obj:`torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if | |
| :obj:`new_num_tokens` is :obj:`None` | |
| """ | |
| if new_num_tokens is None: | |
| return old_embeddings | |
| if is_deepspeed_zero3_enabled(): | |
| import deepspeed | |
| with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None): | |
| old_num_tokens, old_embedding_dim = old_embeddings.weight.size() | |
| else: | |
| old_num_tokens, old_embedding_dim = old_embeddings.weight.size() | |
| if old_num_tokens == new_num_tokens: | |
| return old_embeddings | |
| if not isinstance(old_embeddings, nn.Embedding): | |
| raise TypeError( | |
| f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}." | |
| f"You should either use a different resize function or make sure that `old_embeddings` are an instance of {nn.Embedding}." | |
| ) | |
| # Build new embeddings | |
| new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim).to( | |
| self.device, dtype=old_embeddings.weight.dtype | |
| ) | |
| # initialize all new embeddings (in particular added tokens) | |
| self._init_weights(new_embeddings) | |
| # Copy token embeddings from the previous weights | |
| # numbers of tokens to copy | |
| n = min(old_num_tokens, new_num_tokens) | |
| if is_deepspeed_zero3_enabled(): | |
| import deepspeed | |
| with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=0): | |
| if torch.distributed.get_rank() == 0: | |
| new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :] | |
| else: | |
| new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :] | |
| return new_embeddings | |
| def _get_resized_lm_head( | |
| self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False | |
| ) -> nn.Linear: | |
| """ | |
| Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized | |
| vectors at the end. Reducing the size will remove vectors from the end | |
| Args: | |
| old_lm_head (:obj:`torch.nn.Linear`): | |
| Old lm head liner layer to be resized. | |
| new_num_tokens (:obj:`int`, `optional`): | |
| New number of tokens in the linear matrix. | |
| Increasing the size will add newly initialized vectors at the end. Reducing the size will remove | |
| vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens | |
| :obj:`torch.nn.Linear`` module of the model without doing anything. | |
| transposed (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| Whether ``old_lm_head`` is transposed or not. If True ``old_lm_head.size()`` is ``lm_head_dim, | |
| vocab_size`` else ``vocab_size, lm_head_dim``. | |
| Return: | |
| :obj:`torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if | |
| :obj:`new_num_tokens` is :obj:`None` | |
| """ | |
| if new_num_tokens is None: | |
| return old_lm_head | |
| if is_deepspeed_zero3_enabled(): | |
| import deepspeed | |
| with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None): | |
| old_num_tokens, old_lm_head_dim = ( | |
| old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size() | |
| ) | |
| else: | |
| old_num_tokens, old_lm_head_dim = ( | |
| old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size() | |
| ) | |
| if old_num_tokens == new_num_tokens: | |
| return old_lm_head | |
| if not isinstance(old_lm_head, nn.Linear): | |
| raise TypeError( | |
| f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}." | |
| f"You should either use a different resize function or make sure that `old_lm_head` are an instance of {nn.Linear}." | |
| ) | |
| # Build new lm head | |
| new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim) | |
| has_new_lm_head_bias = old_lm_head.bias is not None | |
| new_lm_head = nn.Linear(*new_lm_head_shape, bias=has_new_lm_head_bias).to(self.device) | |
| # initialize new lm head (in particular added tokens) | |
| self._init_weights(new_lm_head) | |
| num_tokens_to_copy = min(old_num_tokens, new_num_tokens) | |
| # XXX: put the long block of code in a wrapper | |
| if is_deepspeed_zero3_enabled(): | |
| import deepspeed | |
| with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=0): | |
| if torch.distributed.get_rank() == 0: | |
| # Copy old lm head weights to new lm head | |
| if not transposed: | |
| new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[ | |
| :num_tokens_to_copy, : | |
| ] | |
| else: | |
| new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[ | |
| :, :num_tokens_to_copy | |
| ] | |
| # Copy bias weights to new lm head | |
| if has_new_lm_head_bias: | |
| new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy] | |
| else: | |
| # Copy old lm head weights to new lm head | |
| if not transposed: | |
| new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :] | |
| else: | |
| new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy] | |
| # Copy bias weights to new lm head | |
| if has_new_lm_head_bias: | |
| new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy] | |
| return new_lm_head | |
| def init_weights(self): | |
| """ | |
| If needed prunes and maybe initializes weights. | |
| """ | |
| # Prune heads if needed | |
| if self.config.pruned_heads: | |
| self.prune_heads(self.config.pruned_heads) | |
| if _init_weights: | |
| # Initialize weights | |
| self.apply(self._init_weights) | |
| # Tie weights should be skipped when not initializing all weights | |
| # since from_pretrained(...) calls tie weights anyways | |
| self.tie_weights() | |
| def prune_heads(self, heads_to_prune: Dict[int, List[int]]): | |
| """ | |
| Prunes heads of the base model. | |
| Arguments: | |
| heads_to_prune (:obj:`Dict[int, List[int]]`): | |
| Dictionary with keys being selected layer indices (:obj:`int`) and associated values being the list of | |
| heads to prune in said layer (list of :obj:`int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads | |
| 0 and 2 on layer 1 and heads 2 and 3 on layer 2. | |
| """ | |
| # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads | |
| for layer, heads in heads_to_prune.items(): | |
| union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads) | |
| self.config.pruned_heads[layer] = list(union_heads) # Unfortunately we have to store it as list for JSON | |
| self.base_model._prune_heads(heads_to_prune) | |
| def save_pretrained( | |
| self, | |
| save_directory: Union[str, os.PathLike], | |
| save_config: bool = True, | |
| state_dict: Optional[dict] = None, | |
| save_function: Callable = torch.save, | |
| push_to_hub: bool = False, | |
| **kwargs, | |
| ): | |
| """ | |
| Save a model and its configuration file to a directory, so that it can be re-loaded using the | |
| `:func:`~transformers.PreTrainedModel.from_pretrained`` class method. | |
| Arguments: | |
| save_directory (:obj:`str` or :obj:`os.PathLike`): | |
| Directory to which to save. Will be created if it doesn't exist. | |
| save_config (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
| Whether or not to save the config of the model. Useful when in distributed training like TPUs and need | |
| to call this function on all processes. In this case, set :obj:`save_config=True` only on the main | |
| process to avoid race conditions. | |
| state_dict (nested dictionary of :obj:`torch.Tensor`): | |
| The state dictionary of the model to save. Will default to :obj:`self.state_dict()`, but can be used to | |
| only save parts of the model or if special precautions need to be taken when recovering the state | |
| dictionary of a model (like when using model parallelism). | |
| save_function (:obj:`Callable`): | |
| The function to use to save the state dictionary. Useful on distributed training like TPUs when one | |
| need to replace :obj:`torch.save` by another method. | |
| push_to_hub (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| Whether or not to push your model to the Hugging Face model hub after saving it. | |
| .. warning:: | |
| Using :obj:`push_to_hub=True` will synchronize the repository you are pushing to with | |
| :obj:`save_directory`, which requires :obj:`save_directory` to be a local clone of the repo you are | |
| pushing to if it's an existing folder. Pass along :obj:`temp_dir=True` to use a temporary directory | |
| instead. | |
| kwargs: | |
| Additional key word arguments passed along to the | |
| :meth:`~transformers.file_utils.PushToHubMixin.push_to_hub` method. | |
| """ | |
| if os.path.isfile(save_directory): | |
| logger.error(f"Provided path ({save_directory}) should be a directory, not a file") | |
| return | |
| if push_to_hub: | |
| commit_message = kwargs.pop("commit_message", None) | |
| repo = self._create_or_get_repo(save_directory, **kwargs) | |
| os.makedirs(save_directory, exist_ok=True) | |
| # Only save the model itself if we are using distributed training | |
| model_to_save = unwrap_model(self) | |
| # save the string version of dtype to the config, e.g. convert torch.float32 => "float32" | |
| # we currently don't use this setting automatically, but may start to use with v5 | |
| dtype = get_parameter_dtype(model_to_save) | |
| model_to_save.config.torch_dtype = str(dtype).split(".")[1] | |
| # Attach architecture to the config | |
| model_to_save.config.architectures = [model_to_save.__class__.__name__] | |
| # Save the config | |
| if save_config: | |
| model_to_save.config.save_pretrained(save_directory) | |
| # Save the model | |
| if state_dict is None: | |
| state_dict = model_to_save.state_dict() | |
| # Handle the case where some state_dict keys shouldn't be saved | |
| if self._keys_to_ignore_on_save is not None: | |
| state_dict = {k: v for k, v in state_dict.items() if k not in self._keys_to_ignore_on_save} | |
| # If we save using the predefined names, we can load using `from_pretrained` | |
| output_model_file = os.path.join(save_directory, WEIGHTS_NAME) | |
| save_function(state_dict, output_model_file) | |
| logger.info(f"Model weights saved in {output_model_file}") | |
| if push_to_hub: | |
| url = self._push_to_hub(repo, commit_message=commit_message) | |
| logger.info(f"Model pushed to the hub in this commit: {url}") | |
| def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs): | |
| r""" | |
| Instantiate a pretrained pytorch model from a pre-trained model configuration. | |
| The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated). To | |
| train the model, you should first set it back in training mode with ``model.train()``. | |
| The warning `Weights from XXX not initialized from pretrained model` means that the weights of XXX do not come | |
| pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning | |
| task. | |
| The warning `Weights from XXX not used in YYY` means that the layer XXX is not used by YYY, therefore those | |
| weights are discarded. | |
| Parameters: | |
| pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`, `optional`): | |
| Can be either: | |
| - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. | |
| Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under | |
| a user or organization name, like ``dbmdz/bert-base-german-cased``. | |
| - A path to a `directory` containing model weights saved using | |
| :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. | |
| - A path or url to a `tensorflow index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In | |
| this case, ``from_tf`` should be set to :obj:`True` and a configuration object should be provided | |
| as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in | |
| a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. | |
| - A path or url to a model folder containing a `flax checkpoint file` in `.msgpack` format (e.g, | |
| ``./flax_model/`` containing ``flax_model.msgpack``). In this case, ``from_flax`` should be set | |
| to :obj:`True`. | |
| - :obj:`None` if you are both providing the configuration and state dictionary (resp. with keyword | |
| arguments ``config`` and ``state_dict``). | |
| model_args (sequence of positional arguments, `optional`): | |
| All remaning positional arguments will be passed to the underlying model's ``__init__`` method. | |
| config (:obj:`Union[PretrainedConfig, str, os.PathLike]`, `optional`): | |
| Can be either: | |
| - an instance of a class derived from :class:`~transformers.PretrainedConfig`, | |
| - a string or path valid as input to :func:`~transformers.PretrainedConfig.from_pretrained`. | |
| Configuration for the model to use instead of an automatically loaded configuation. Configuration can | |
| be automatically loaded when: | |
| - The model is a model provided by the library (loaded with the `model id` string of a pretrained | |
| model). | |
| - The model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded | |
| by supplying the save directory. | |
| - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a | |
| configuration JSON file named `config.json` is found in the directory. | |
| state_dict (:obj:`Dict[str, torch.Tensor]`, `optional`): | |
| A state dictionary to use instead of a state dictionary loaded from saved weights file. | |
| This option can be used if you want to create a model from a pretrained configuration but load your own | |
| weights. In this case though, you should check if using | |
| :func:`~transformers.PreTrainedModel.save_pretrained` and | |
| :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option. | |
| cache_dir (:obj:`Union[str, os.PathLike]`, `optional`): | |
| Path to a directory in which a downloaded pretrained model configuration should be cached if the | |
| standard cache should not be used. | |
| from_tf (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| Load the model weights from a TensorFlow checkpoint save file (see docstring of | |
| ``pretrained_model_name_or_path`` argument). | |
| from_flax (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| Load the model weights from a Flax checkpoint save file (see docstring of | |
| ``pretrained_model_name_or_path`` argument). | |
| ignore_mismatched_sizes (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| Whether or not to raise an error if some of the weights from the checkpoint do not have the same size | |
| as the weights of the model (if for instance, you are instantiating a model with 10 labels from a | |
| checkpoint with 3 labels). | |
| force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| Whether or not to delete incompletely received files. Will attempt to resume the download if such a | |
| file exists. | |
| proxies (:obj:`Dict[str, str], `optional`): | |
| A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
| local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| Whether or not to only look at local files (i.e., do not try to download the model). | |
| use_auth_token (:obj:`str` or `bool`, `optional`): | |
| The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token | |
| generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`). | |
| revision(:obj:`str`, `optional`, defaults to :obj:`"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
| git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any | |
| identifier allowed by git. | |
| mirror(:obj:`str`, `optional`): | |
| Mirror source to accelerate downloads in China. If you are from China and have an accessibility | |
| problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. | |
| Please refer to the mirror site for more information. | |
| _fast_init(:obj:`bool`, `optional`, defaults to `:obj:`True`): | |
| Whether or not to disable fast initialization. | |
| torch_dtype (:obj:`str` or :obj:`torch.dtype`, `optional`): | |
| Override the default ``torch.dtype`` and load the model under this dtype. If ``"auto"`` is passed the | |
| dtype will be automatically derived from the model's weights. | |
| .. warning:: | |
| One should only disable `_fast_init` to ensure backwards compatibility with | |
| ``transformers.__version__ < 4.6.0`` for seeded model initialization. This argument will be removed | |
| at the next major version. See `pull request 11471 | |
| <https://github.com/huggingface/transformers/pull/11471>`__ for more information. | |
| kwargs (remaining dictionary of keyword arguments, `optional`): | |
| Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., | |
| :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or | |
| automatically loaded: | |
| - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the | |
| underlying model's ``__init__`` method (we assume all relevant updates to the configuration have | |
| already been done) | |
| - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class | |
| initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of | |
| ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute | |
| with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration | |
| attribute will be passed to the underlying model's ``__init__`` function. | |
| .. note:: | |
| Passing :obj:`use_auth_token=True` is required when you want to use a private model. | |
| .. note:: | |
| Activate the special `"offline-mode" | |
| <https://huggingface.co/transformers/installation.html#offline-mode>`__ to use this method in a firewalled | |
| environment. | |
| Examples:: | |
| >>> from transformers import BertConfig, BertModel | |
| >>> # Download model and configuration from huggingface.co and cache. | |
| >>> model = BertModel.from_pretrained('bert-base-uncased') | |
| >>> # Model was saved using `save_pretrained('./test/saved_model/')` (for example purposes, not runnable). | |
| >>> model = BertModel.from_pretrained('./test/saved_model/') | |
| >>> # Update configuration during loading. | |
| >>> model = BertModel.from_pretrained('bert-base-uncased', output_attentions=True) | |
| >>> assert model.config.output_attentions == True | |
| >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable). | |
| >>> config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json') | |
| >>> model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config) | |
| >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower) | |
| >>> model = BertModel.from_pretrained('bert-base-uncased', from_flax=True) | |
| """ | |
| config = kwargs.pop("config", None) | |
| state_dict = kwargs.pop("state_dict", None) | |
| cache_dir = kwargs.pop("cache_dir", None) | |
| from_tf = kwargs.pop("from_tf", False) | |
| from_flax = kwargs.pop("from_flax", False) | |
| ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) | |
| force_download = kwargs.pop("force_download", False) | |
| resume_download = kwargs.pop("resume_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| output_loading_info = kwargs.pop("output_loading_info", False) | |
| local_files_only = kwargs.pop("local_files_only", False) | |
| use_auth_token = kwargs.pop("use_auth_token", None) | |
| revision = kwargs.pop("revision", None) | |
| mirror = kwargs.pop("mirror", None) | |
| from_pipeline = kwargs.pop("_from_pipeline", None) | |
| from_auto_class = kwargs.pop("_from_auto", False) | |
| _fast_init = kwargs.pop("_fast_init", True) | |
| torch_dtype = kwargs.pop("torch_dtype", None) | |
| from_pt = not (from_tf | from_flax) | |
| user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class} | |
| if from_pipeline is not None: | |
| user_agent["using_pipeline"] = from_pipeline | |
| if is_offline_mode() and not local_files_only: | |
| logger.info("Offline mode: forcing local_files_only=True") | |
| local_files_only = True | |
| # Load config if we don't provide a configuration | |
| if not isinstance(config, PretrainedConfig): | |
| config_path = config if config is not None else pretrained_model_name_or_path | |
| config, model_kwargs = cls.config_class.from_pretrained( | |
| config_path, | |
| *model_args, | |
| cache_dir=cache_dir, | |
| return_unused_kwargs=True, | |
| force_download=force_download, | |
| resume_download=resume_download, | |
| proxies=proxies, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| revision=revision, | |
| _from_auto=from_auto_class, | |
| _from_pipeline=from_pipeline, | |
| **kwargs, | |
| ) | |
| else: | |
| model_kwargs = kwargs | |
| # Load model | |
| if pretrained_model_name_or_path is not None: | |
| pretrained_model_name_or_path = str(pretrained_model_name_or_path) | |
| if os.path.isdir(pretrained_model_name_or_path): | |
| if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")): | |
| # Load from a TF 1.0 checkpoint in priority if from_tf | |
| archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index") | |
| elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)): | |
| # Load from a TF 2.0 checkpoint in priority if from_tf | |
| archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME) | |
| elif from_flax and os.path.isfile(os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)): | |
| # Load from a Flax checkpoint in priority if from_flax | |
| archive_file = os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME) | |
| elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)): | |
| # Load from a PyTorch checkpoint | |
| archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) | |
| else: | |
| raise EnvironmentError( | |
| f"Error no file named {[WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + '.index', FLAX_WEIGHTS_NAME]} found in " | |
| f"directory {pretrained_model_name_or_path} or `from_tf` and `from_flax` set to False." | |
| ) | |
| elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): | |
| archive_file = pretrained_model_name_or_path | |
| elif os.path.isfile(pretrained_model_name_or_path + ".index"): | |
| if not from_tf: | |
| raise ValueError( | |
| f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set " | |
| "from_tf to True to load from this checkpoint." | |
| ) | |
| archive_file = pretrained_model_name_or_path + ".index" | |
| else: | |
| # set correct filename | |
| if from_tf: | |
| filename = TF2_WEIGHTS_NAME | |
| elif from_flax: | |
| filename = FLAX_WEIGHTS_NAME | |
| else: | |
| filename = WEIGHTS_NAME | |
| archive_file = hf_bucket_url( | |
| pretrained_model_name_or_path, | |
| filename=filename, | |
| revision=revision, | |
| mirror=mirror, | |
| ) | |
| try: | |
| # Load from URL or cache if already cached | |
| resolved_archive_file = cached_path( | |
| archive_file, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| resume_download=resume_download, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| user_agent=user_agent, | |
| ) | |
| except EnvironmentError as err: | |
| logger.error(err) | |
| msg = ( | |
| f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n" | |
| f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n" | |
| f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME}.\n\n" | |
| ) | |
| raise EnvironmentError(msg) | |
| if resolved_archive_file == archive_file: | |
| logger.info(f"loading weights file {archive_file}") | |
| else: | |
| logger.info(f"loading weights file {archive_file} from cache at {resolved_archive_file}") | |
| else: | |
| resolved_archive_file = None | |
| # load pt weights early so that we know which dtype to init the model under | |
| if from_pt: | |
| if state_dict is None: | |
| try: | |
| state_dict = torch.load(resolved_archive_file, map_location="cpu") | |
| except Exception: | |
| raise OSError( | |
| f"Unable to load weights from pytorch checkpoint file for '{pretrained_model_name_or_path}' " | |
| f"at '{resolved_archive_file}'" | |
| "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. " | |
| ) | |
| # set dtype to instantiate the model under: | |
| # 1. If torch_dtype is not None, we use that dtype | |
| # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first | |
| # weights entry - we assume all weights are of the same dtype | |
| # we also may have config.torch_dtype available, but we won't rely on it till v5 | |
| dtype_orig = None | |
| if torch_dtype is not None: | |
| if isinstance(torch_dtype, str): | |
| if torch_dtype == "auto": | |
| torch_dtype = next(iter(state_dict.values())).dtype | |
| else: | |
| raise ValueError( | |
| f"`torch_dtype` can be either a `torch.dtype` or `auto`, but received {torch_dtype}" | |
| ) | |
| dtype_orig = cls._set_default_torch_dtype(torch_dtype) | |
| config.name_or_path = pretrained_model_name_or_path | |
| # Instantiate model. | |
| if is_deepspeed_zero3_enabled(): | |
| import deepspeed | |
| logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model") | |
| # this immediately partitions the model across all gpus, to avoid the overhead in time | |
| # and memory copying it on CPU or each GPU first | |
| with deepspeed.zero.Init(config=deepspeed_config()): | |
| with no_init_weights(_enable=_fast_init): | |
| model = cls(config, *model_args, **model_kwargs) | |
| else: | |
| with no_init_weights(_enable=_fast_init): | |
| model = cls(config, *model_args, **model_kwargs) | |
| if from_pt: | |
| # restore default dtype | |
| if dtype_orig is not None: | |
| torch.set_default_dtype(dtype_orig) | |
| if from_tf: | |
| if resolved_archive_file.endswith(".index"): | |
| # Load from a TensorFlow 1.X checkpoint - provided by original authors | |
| model = cls.load_tf_weights(model, config, resolved_archive_file[:-6]) # Remove the '.index' | |
| else: | |
| # Load from our TensorFlow 2.0 checkpoints | |
| try: | |
| from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model | |
| model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True) | |
| except ImportError: | |
| logger.error( | |
| "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " | |
| "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." | |
| ) | |
| raise | |
| elif from_flax: | |
| try: | |
| from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model | |
| model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file) | |
| except ImportError: | |
| logger.error( | |
| "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see " | |
| "https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation instructions." | |
| ) | |
| raise | |
| elif from_pt: | |
| model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_state_dict_into_model( | |
| model, | |
| state_dict, | |
| pretrained_model_name_or_path, | |
| ignore_mismatched_sizes=ignore_mismatched_sizes, | |
| _fast_init=_fast_init, | |
| ) | |
| # make sure token embedding weights are still tied if needed | |
| model.tie_weights() | |
| # Set model in evaluation mode to deactivate DropOut modules by default | |
| model.eval() | |
| if output_loading_info: | |
| loading_info = { | |
| "missing_keys": missing_keys, | |
| "unexpected_keys": unexpected_keys, | |
| "mismatched_keys": mismatched_keys, | |
| "error_msgs": error_msgs, | |
| } | |
| return model, loading_info | |
| return model | |
| def _load_state_dict_into_model( | |
| cls, model, state_dict, pretrained_model_name_or_path, ignore_mismatched_sizes=False, _fast_init=True | |
| ): | |
| # Convert old format to new format if needed from a PyTorch state_dict | |
| old_keys = [] | |
| new_keys = [] | |
| for key in state_dict.keys(): | |
| new_key = None | |
| if "gamma" in key: | |
| new_key = key.replace("gamma", "weight") | |
| if "beta" in key: | |
| new_key = key.replace("beta", "bias") | |
| if new_key: | |
| old_keys.append(key) | |
| new_keys.append(new_key) | |
| for old_key, new_key in zip(old_keys, new_keys): | |
| state_dict[new_key] = state_dict.pop(old_key) | |
| # Retrieve missing & unexpected_keys | |
| model_state_dict = model.state_dict() | |
| expected_keys = list(model_state_dict.keys()) | |
| loaded_keys = list(state_dict.keys()) | |
| prefix = model.base_model_prefix | |
| has_prefix_module = any(s.startswith(prefix) for s in loaded_keys) | |
| expects_prefix_module = any(s.startswith(prefix) for s in expected_keys) | |
| # key re-naming operations are never done on the keys | |
| # that are loaded, but always on the keys of the newly initialized model | |
| remove_prefix = not has_prefix_module and expects_prefix_module | |
| add_prefix = has_prefix_module and not expects_prefix_module | |
| if remove_prefix: | |
| expected_keys = [".".join(s.split(".")[1:]) if s.startswith(prefix) else s for s in expected_keys] | |
| elif add_prefix: | |
| expected_keys = [".".join([prefix, s]) for s in expected_keys] | |
| missing_keys = list(set(expected_keys) - set(loaded_keys)) | |
| unexpected_keys = list(set(loaded_keys) - set(expected_keys)) | |
| # Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not | |
| # matching the weights in the model. | |
| mismatched_keys = [] | |
| if ignore_mismatched_sizes: | |
| for checkpoint_key in loaded_keys: | |
| model_key = checkpoint_key | |
| if remove_prefix and checkpoint_key.startswith(prefix): | |
| model_key = ".".join(checkpoint_key.split(".")[1:]) | |
| elif add_prefix: | |
| model_key = f"{prefix}.{checkpoint_key}" | |
| if ( | |
| model_key in model_state_dict | |
| and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape | |
| ): | |
| mismatched_keys.append( | |
| (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape) | |
| ) | |
| del state_dict[checkpoint_key] | |
| # Some models may have keys that are not in the state by design, removing them before needlessly warning | |
| # the user. | |
| if cls._keys_to_ignore_on_load_missing is not None: | |
| for pat in cls._keys_to_ignore_on_load_missing: | |
| missing_keys = [k for k in missing_keys if re.search(pat, k) is None] | |
| if cls._keys_to_ignore_on_load_unexpected is not None: | |
| for pat in cls._keys_to_ignore_on_load_unexpected: | |
| unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
| if _fast_init: | |
| # retrieve unintialized modules and initialize | |
| unintialized_modules = model.retrieve_modules_from_names( | |
| missing_keys, add_prefix=add_prefix, remove_prefix=remove_prefix | |
| ) | |
| for module in unintialized_modules: | |
| model._init_weights(module) | |
| # copy state_dict so _load_from_state_dict can modify it | |
| metadata = getattr(state_dict, "_metadata", None) | |
| state_dict = state_dict.copy() | |
| if metadata is not None: | |
| state_dict._metadata = metadata | |
| error_msgs = [] | |
| # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants | |
| # so we need to apply the function recursively. | |
| def load(module: nn.Module, prefix=""): | |
| local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) | |
| args = (state_dict, prefix, local_metadata, True, [], [], error_msgs) | |
| if is_deepspeed_zero3_enabled(): | |
| import deepspeed | |
| # because zero3 puts placeholders in model params, this context | |
| # manager gathers (unpartitions) the params of the current layer, then loads from | |
| # the state dict and then re-partitions them again | |
| with deepspeed.zero.GatheredParameters(list(module.parameters(recurse=False)), modifier_rank=0): | |
| if torch.distributed.get_rank() == 0: | |
| module._load_from_state_dict(*args) | |
| else: | |
| module._load_from_state_dict(*args) | |
| for name, child in module._modules.items(): | |
| if child is not None: | |
| load(child, prefix + name + ".") | |
| # Make sure we are able to load base models as well as derived models (with heads) | |
| start_prefix = "" | |
| model_to_load = model | |
| if not hasattr(model, cls.base_model_prefix) and has_prefix_module: | |
| start_prefix = cls.base_model_prefix + "." | |
| if hasattr(model, cls.base_model_prefix) and not has_prefix_module: | |
| model_to_load = getattr(model, cls.base_model_prefix) | |
| load(model_to_load, prefix=start_prefix) | |
| if len(error_msgs) > 0: | |
| error_msg = "\n\t".join(error_msgs) | |
| raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}") | |
| if len(unexpected_keys) > 0: | |
| logger.warning( | |
| f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when " | |
| f"initializing {model.__class__.__name__}: {unexpected_keys}\n" | |
| f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task " | |
| f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n" | |
| f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect " | |
| f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." | |
| ) | |
| else: | |
| logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") | |
| if len(missing_keys) > 0: | |
| logger.warning( | |
| f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} " | |
| f"and are newly initialized: {missing_keys}\n" | |
| f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." | |
| ) | |
| elif len(mismatched_keys) == 0: | |
| logger.info( | |
| f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n" | |
| f"If your task is similar to the task the model of the checkpoint was trained on, " | |
| f"you can already use {model.__class__.__name__} for predictions without further training." | |
| ) | |
| if len(mismatched_keys) > 0: | |
| mismatched_warning = "\n".join( | |
| [ | |
| f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" | |
| for key, shape1, shape2 in mismatched_keys | |
| ] | |
| ) | |
| logger.warning( | |
| f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} " | |
| f"and are newly initialized because the shapes did not match:\n{mismatched_warning}\n" | |
| f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference." | |
| ) | |
| return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs | |
| def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False): | |
| module_keys = set([".".join(key.split(".")[:-1]) for key in names]) | |
| # torch.nn.ParameterList is a special case where two parameter keywords | |
| # are appended to the module name, *e.g.* bert.special_embeddings.0 | |
| module_keys = module_keys.union(set([".".join(key.split(".")[:-2]) for key in names if key[-1].isdigit()])) | |
| retrieved_modules = [] | |
| # retrieve all modules that has at least one missing weight name | |
| for name, module in self.named_modules(): | |
| if remove_prefix: | |
| name = ".".join(name.split(".")[1:]) if name.startswith(self.base_model_prefix) else name | |
| elif add_prefix: | |
| name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix | |
| if name in module_keys: | |
| retrieved_modules.append(module) | |
| return retrieved_modules | |
| # To update the docstring, we need to copy the method, otherwise we change the original docstring. | |
| PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub) | |
| PreTrainedModel.push_to_hub.__doc__ = PreTrainedModel.push_to_hub.__doc__.format( | |
| object="model", object_class="AutoModel", object_files="model checkpoint" | |
| ) | |
| class Conv1D(nn.Module): | |
| """ | |
| 1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2). | |
| Basically works like a linear layer but the weights are transposed. | |
| Args: | |
| nf (:obj:`int`): The number of output features. | |
| nx (:obj:`int`): The number of input features. | |
| """ | |
| def __init__(self, nf, nx): | |
| super().__init__() | |
| self.nf = nf | |
| w = torch.empty(nx, nf) | |
| nn.init.normal_(w, std=0.02) | |
| self.weight = nn.Parameter(w) | |
| self.bias = nn.Parameter(torch.zeros(nf)) | |
| def forward(self, x): | |
| size_out = x.size()[:-1] + (self.nf,) | |
| x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) | |
| x = x.view(*size_out) | |
| return x | |
| class PoolerStartLogits(nn.Module): | |
| """ | |
| Compute SQuAD start logits from sequence hidden states. | |
| Args: | |
| config (:class:`~transformers.PretrainedConfig`): | |
| The config used by the model, will be used to grab the :obj:`hidden_size` of the model. | |
| """ | |
| def __init__(self, config: PretrainedConfig): | |
| super().__init__() | |
| self.dense = nn.Linear(config.hidden_size, 1) | |
| def forward( | |
| self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None | |
| ) -> torch.FloatTensor: | |
| """ | |
| Args: | |
| hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): | |
| The final hidden states of the model. | |
| p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`): | |
| Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token | |
| should be masked. | |
| Returns: | |
| :obj:`torch.FloatTensor`: The start logits for SQuAD. | |
| """ | |
| x = self.dense(hidden_states).squeeze(-1) | |
| if p_mask is not None: | |
| if get_parameter_dtype(self) == torch.float16: | |
| x = x * (1 - p_mask) - 65500 * p_mask | |
| else: | |
| x = x * (1 - p_mask) - 1e30 * p_mask | |
| return x | |
| class PoolerEndLogits(nn.Module): | |
| """ | |
| Compute SQuAD end logits from sequence hidden states. | |
| Args: | |
| config (:class:`~transformers.PretrainedConfig`): | |
| The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the | |
| :obj:`layer_norm_eps` to use. | |
| """ | |
| def __init__(self, config: PretrainedConfig): | |
| super().__init__() | |
| self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) | |
| self.activation = nn.Tanh() | |
| self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dense_1 = nn.Linear(config.hidden_size, 1) | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| start_states: Optional[torch.FloatTensor] = None, | |
| start_positions: Optional[torch.LongTensor] = None, | |
| p_mask: Optional[torch.FloatTensor] = None, | |
| ) -> torch.FloatTensor: | |
| """ | |
| Args: | |
| hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): | |
| The final hidden states of the model. | |
| start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`): | |
| The hidden states of the first tokens for the labeled span. | |
| start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
| The position of the first token for the labeled span. | |
| p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`): | |
| Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token | |
| should be masked. | |
| .. note:: | |
| One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set, | |
| ``start_positions`` overrides ``start_states``. | |
| Returns: | |
| :obj:`torch.FloatTensor`: The end logits for SQuAD. | |
| """ | |
| assert ( | |
| start_states is not None or start_positions is not None | |
| ), "One of start_states, start_positions should be not None" | |
| if start_positions is not None: | |
| slen, hsz = hidden_states.shape[-2:] | |
| start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) | |
| start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz) | |
| start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz) | |
| x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1)) | |
| x = self.activation(x) | |
| x = self.LayerNorm(x) | |
| x = self.dense_1(x).squeeze(-1) | |
| if p_mask is not None: | |
| if get_parameter_dtype(self) == torch.float16: | |
| x = x * (1 - p_mask) - 65500 * p_mask | |
| else: | |
| x = x * (1 - p_mask) - 1e30 * p_mask | |
| return x | |
| class PoolerAnswerClass(nn.Module): | |
| """ | |
| Compute SQuAD 2.0 answer class from classification and start tokens hidden states. | |
| Args: | |
| config (:class:`~transformers.PretrainedConfig`): | |
| The config used by the model, will be used to grab the :obj:`hidden_size` of the model. | |
| """ | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size) | |
| self.activation = nn.Tanh() | |
| self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False) | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| start_states: Optional[torch.FloatTensor] = None, | |
| start_positions: Optional[torch.LongTensor] = None, | |
| cls_index: Optional[torch.LongTensor] = None, | |
| ) -> torch.FloatTensor: | |
| """ | |
| Args: | |
| hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): | |
| The final hidden states of the model. | |
| start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`): | |
| The hidden states of the first tokens for the labeled span. | |
| start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
| The position of the first token for the labeled span. | |
| cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
| Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token. | |
| .. note:: | |
| One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set, | |
| ``start_positions`` overrides ``start_states``. | |
| Returns: | |
| :obj:`torch.FloatTensor`: The SQuAD 2.0 answer class. | |
| """ | |
| # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample. | |
| hsz = hidden_states.shape[-1] | |
| assert ( | |
| start_states is not None or start_positions is not None | |
| ), "One of start_states, start_positions should be not None" | |
| if start_positions is not None: | |
| start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) | |
| start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz) | |
| if cls_index is not None: | |
| cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz) | |
| cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz) | |
| else: | |
| cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz) | |
| x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1)) | |
| x = self.activation(x) | |
| x = self.dense_1(x).squeeze(-1) | |
| return x | |
| class SquadHeadOutput(ModelOutput): | |
| """ | |
| Base class for outputs of question answering models using a :class:`~transformers.modeling_utils.SQuADHead`. | |
| Args: | |
| loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned if both :obj:`start_positions` and :obj:`end_positions` are provided): | |
| Classification loss as the sum of start token, end token (and is_impossible if provided) classification | |
| losses. | |
| start_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): | |
| Log probabilities for the top config.start_n_top start token possibilities (beam-search). | |
| start_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): | |
| Indices for the top config.start_n_top start token possibilities (beam-search). | |
| end_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): | |
| Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities | |
| (beam-search). | |
| end_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): | |
| Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search). | |
| cls_logits (``torch.FloatTensor`` of shape ``(batch_size,)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided): | |
| Log probabilities for the ``is_impossible`` label of the answers. | |
| """ | |
| loss: Optional[torch.FloatTensor] = None | |
| start_top_log_probs: Optional[torch.FloatTensor] = None | |
| start_top_index: Optional[torch.LongTensor] = None | |
| end_top_log_probs: Optional[torch.FloatTensor] = None | |
| end_top_index: Optional[torch.LongTensor] = None | |
| cls_logits: Optional[torch.FloatTensor] = None | |
| class SQuADHead(nn.Module): | |
| r""" | |
| A SQuAD head inspired by XLNet. | |
| Args: | |
| config (:class:`~transformers.PretrainedConfig`): | |
| The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the | |
| :obj:`layer_norm_eps` to use. | |
| """ | |
| def __init__(self, config): | |
| super().__init__() | |
| self.start_n_top = config.start_n_top | |
| self.end_n_top = config.end_n_top | |
| self.start_logits = PoolerStartLogits(config) | |
| self.end_logits = PoolerEndLogits(config) | |
| self.answer_class = PoolerAnswerClass(config) | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| start_positions: Optional[torch.LongTensor] = None, | |
| end_positions: Optional[torch.LongTensor] = None, | |
| cls_index: Optional[torch.LongTensor] = None, | |
| is_impossible: Optional[torch.LongTensor] = None, | |
| p_mask: Optional[torch.FloatTensor] = None, | |
| return_dict: bool = False, | |
| ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]: | |
| """ | |
| Args: | |
| hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`): | |
| Final hidden states of the model on the sequence tokens. | |
| start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
| Positions of the first token for the labeled span. | |
| end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
| Positions of the last token for the labeled span. | |
| cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
| Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token. | |
| is_impossible (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
| Whether the question has a possible answer in the paragraph or not. | |
| p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`): | |
| Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token | |
| should be masked. | |
| return_dict (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
| Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
| Returns: | |
| """ | |
| start_logits = self.start_logits(hidden_states, p_mask=p_mask) | |
| if start_positions is not None and end_positions is not None: | |
| # If we are on multi-GPU, let's remove the dimension added by batch splitting | |
| for x in (start_positions, end_positions, cls_index, is_impossible): | |
| if x is not None and x.dim() > 1: | |
| x.squeeze_(-1) | |
| # during training, compute the end logits based on the ground truth of the start position | |
| end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask) | |
| loss_fct = CrossEntropyLoss() | |
| start_loss = loss_fct(start_logits, start_positions) | |
| end_loss = loss_fct(end_logits, end_positions) | |
| total_loss = (start_loss + end_loss) / 2 | |
| if cls_index is not None and is_impossible is not None: | |
| # Predict answerability from the representation of CLS and START | |
| cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index) | |
| loss_fct_cls = nn.BCEWithLogitsLoss() | |
| cls_loss = loss_fct_cls(cls_logits, is_impossible) | |
| # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss | |
| total_loss += cls_loss * 0.5 | |
| return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,) | |
| else: | |
| # during inference, compute the end logits based on beam search | |
| bsz, slen, hsz = hidden_states.size() | |
| start_log_probs = nn.functional.softmax(start_logits, dim=-1) # shape (bsz, slen) | |
| start_top_log_probs, start_top_index = torch.topk( | |
| start_log_probs, self.start_n_top, dim=-1 | |
| ) # shape (bsz, start_n_top) | |
| start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz) | |
| start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz) | |
| start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz) | |
| hidden_states_expanded = hidden_states.unsqueeze(2).expand_as( | |
| start_states | |
| ) # shape (bsz, slen, start_n_top, hsz) | |
| p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None | |
| end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask) | |
| end_log_probs = nn.functional.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top) | |
| end_top_log_probs, end_top_index = torch.topk( | |
| end_log_probs, self.end_n_top, dim=1 | |
| ) # shape (bsz, end_n_top, start_n_top) | |
| end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top) | |
| end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top) | |
| start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs) | |
| cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index) | |
| if not return_dict: | |
| return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) | |
| else: | |
| return SquadHeadOutput( | |
| start_top_log_probs=start_top_log_probs, | |
| start_top_index=start_top_index, | |
| end_top_log_probs=end_top_log_probs, | |
| end_top_index=end_top_index, | |
| cls_logits=cls_logits, | |
| ) | |
| class SequenceSummary(nn.Module): | |
| r""" | |
| Compute a single vector summary of a sequence hidden states. | |
| Args: | |
| config (:class:`~transformers.PretrainedConfig`): | |
| The config used by the model. Relevant arguments in the config class of the model are (refer to the actual | |
| config class of your model for the default values it uses): | |
| - **summary_type** (:obj:`str`) -- The method to use to make this summary. Accepted values are: | |
| - :obj:`"last"` -- Take the last token hidden state (like XLNet) | |
| - :obj:`"first"` -- Take the first token hidden state (like Bert) | |
| - :obj:`"mean"` -- Take the mean of all tokens hidden states | |
| - :obj:`"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2) | |
| - :obj:`"attn"` -- Not implemented now, use multi-head attention | |
| - **summary_use_proj** (:obj:`bool`) -- Add a projection after the vector extraction. | |
| - **summary_proj_to_labels** (:obj:`bool`) -- If :obj:`True`, the projection outputs to | |
| :obj:`config.num_labels` classes (otherwise to :obj:`config.hidden_size`). | |
| - **summary_activation** (:obj:`Optional[str]`) -- Set to :obj:`"tanh"` to add a tanh activation to the | |
| output, another string or :obj:`None` will add no activation. | |
| - **summary_first_dropout** (:obj:`float`) -- Optional dropout probability before the projection and | |
| activation. | |
| - **summary_last_dropout** (:obj:`float`)-- Optional dropout probability after the projection and | |
| activation. | |
| """ | |
| def __init__(self, config: PretrainedConfig): | |
| super().__init__() | |
| self.summary_type = getattr(config, "summary_type", "last") | |
| if self.summary_type == "attn": | |
| # We should use a standard multi-head attention module with absolute positional embedding for that. | |
| # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276 | |
| # We can probably just use the multi-head attention module of PyTorch >=1.1.0 | |
| raise NotImplementedError | |
| self.summary = Identity() | |
| if hasattr(config, "summary_use_proj") and config.summary_use_proj: | |
| if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0: | |
| num_classes = config.num_labels | |
| else: | |
| num_classes = config.hidden_size | |
| self.summary = nn.Linear(config.hidden_size, num_classes) | |
| activation_string = getattr(config, "summary_activation", None) | |
| self.activation: Callable = get_activation(activation_string) if activation_string else Identity() | |
| self.first_dropout = Identity() | |
| if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0: | |
| self.first_dropout = nn.Dropout(config.summary_first_dropout) | |
| self.last_dropout = Identity() | |
| if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0: | |
| self.last_dropout = nn.Dropout(config.summary_last_dropout) | |
| def forward( | |
| self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None | |
| ) -> torch.FloatTensor: | |
| """ | |
| Compute a single vector summary of a sequence hidden states. | |
| Args: | |
| hidden_states (:obj:`torch.FloatTensor` of shape :obj:`[batch_size, seq_len, hidden_size]`): | |
| The hidden states of the last layer. | |
| cls_index (:obj:`torch.LongTensor` of shape :obj:`[batch_size]` or :obj:`[batch_size, ...]` where ... are optional leading dimensions of :obj:`hidden_states`, `optional`): | |
| Used if :obj:`summary_type == "cls_index"` and takes the last token of the sequence as classification | |
| token. | |
| Returns: | |
| :obj:`torch.FloatTensor`: The summary of the sequence hidden states. | |
| """ | |
| if self.summary_type == "last": | |
| output = hidden_states[:, -1] | |
| elif self.summary_type == "first": | |
| output = hidden_states[:, 0] | |
| elif self.summary_type == "mean": | |
| output = hidden_states.mean(dim=1) | |
| elif self.summary_type == "cls_index": | |
| if cls_index is None: | |
| cls_index = torch.full_like( | |
| hidden_states[..., :1, :], | |
| hidden_states.shape[-2] - 1, | |
| dtype=torch.long, | |
| ) | |
| else: | |
| cls_index = cls_index.unsqueeze(-1).unsqueeze(-1) | |
| cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),)) | |
| # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states | |
| output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size) | |
| elif self.summary_type == "attn": | |
| raise NotImplementedError | |
| output = self.first_dropout(output) | |
| output = self.summary(output) | |
| output = self.activation(output) | |
| output = self.last_dropout(output) | |
| return output | |
| def unwrap_model(model: nn.Module) -> nn.Module: | |
| """ | |
| Recursively unwraps a model from potential containers (as used in distributed training). | |
| Args: | |
| model (:obj:`torch.nn.Module`): The model to unwrap. | |
| """ | |
| # since there could be multiple levels of wrapping, unwrap recursively | |
| if hasattr(model, "module"): | |
| return unwrap_model(model.module) | |
| else: | |
| return model | |
| def prune_linear_layer(layer: nn.Linear, index: torch.LongTensor, dim: int = 0) -> nn.Linear: | |
| """ | |
| Prune a linear layer to keep only entries in index. | |
| Used to remove heads. | |
| Args: | |
| layer (:obj:`torch.nn.Linear`): The layer to prune. | |
| index (:obj:`torch.LongTensor`): The indices to keep in the layer. | |
| dim (:obj:`int`, `optional`, defaults to 0): The dimension on which to keep the indices. | |
| Returns: | |
| :obj:`torch.nn.Linear`: The pruned layer as a new layer with :obj:`requires_grad=True`. | |
| """ | |
| index = index.to(layer.weight.device) | |
| W = layer.weight.index_select(dim, index).clone().detach() | |
| if layer.bias is not None: | |
| if dim == 1: | |
| b = layer.bias.clone().detach() | |
| else: | |
| b = layer.bias[index].clone().detach() | |
| new_size = list(layer.weight.size()) | |
| new_size[dim] = len(index) | |
| new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device) | |
| new_layer.weight.requires_grad = False | |
| new_layer.weight.copy_(W.contiguous()) | |
| new_layer.weight.requires_grad = True | |
| if layer.bias is not None: | |
| new_layer.bias.requires_grad = False | |
| new_layer.bias.copy_(b.contiguous()) | |
| new_layer.bias.requires_grad = True | |
| return new_layer | |
| def prune_conv1d_layer(layer: Conv1D, index: torch.LongTensor, dim: int = 1) -> Conv1D: | |
| """ | |
| Prune a Conv1D layer to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights | |
| are transposed. | |
| Used to remove heads. | |
| Args: | |
| layer (:class:`~transformers.modeling_utils.Conv1D`): The layer to prune. | |
| index (:obj:`torch.LongTensor`): The indices to keep in the layer. | |
| dim (:obj:`int`, `optional`, defaults to 1): The dimension on which to keep the indices. | |
| Returns: | |
| :class:`~transformers.modeling_utils.Conv1D`: The pruned layer as a new layer with :obj:`requires_grad=True`. | |
| """ | |
| index = index.to(layer.weight.device) | |
| W = layer.weight.index_select(dim, index).clone().detach() | |
| if dim == 0: | |
| b = layer.bias.clone().detach() | |
| else: | |
| b = layer.bias[index].clone().detach() | |
| new_size = list(layer.weight.size()) | |
| new_size[dim] = len(index) | |
| new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device) | |
| new_layer.weight.requires_grad = False | |
| new_layer.weight.copy_(W.contiguous()) | |
| new_layer.weight.requires_grad = True | |
| new_layer.bias.requires_grad = False | |
| new_layer.bias.copy_(b.contiguous()) | |
| new_layer.bias.requires_grad = True | |
| return new_layer | |
| def prune_layer( | |
| layer: Union[nn.Linear, Conv1D], index: torch.LongTensor, dim: Optional[int] = None | |
| ) -> Union[nn.Linear, Conv1D]: | |
| """ | |
| Prune a Conv1D or linear layer to keep only entries in index. | |
| Used to remove heads. | |
| Args: | |
| layer (:obj:`Union[torch.nn.Linear, Conv1D]`): The layer to prune. | |
| index (:obj:`torch.LongTensor`): The indices to keep in the layer. | |
| dim (:obj:`int`, `optional`): The dimension on which to keep the indices. | |
| Returns: | |
| :obj:`torch.nn.Linear` or :class:`~transformers.modeling_utils.Conv1D`: The pruned layer as a new layer with | |
| :obj:`requires_grad=True`. | |
| """ | |
| if isinstance(layer, nn.Linear): | |
| return prune_linear_layer(layer, index, dim=0 if dim is None else dim) | |
| elif isinstance(layer, Conv1D): | |
| return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim) | |
| else: | |
| raise ValueError(f"Can't prune layer of class {layer.__class__}") | |
| def apply_chunking_to_forward( | |
| forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors | |
| ) -> torch.Tensor: | |
| """ | |
| This function chunks the :obj:`input_tensors` into smaller input tensor parts of size :obj:`chunk_size` over the | |
| dimension :obj:`chunk_dim`. It then applies a layer :obj:`forward_fn` to each chunk independently to save memory. | |
| If the :obj:`forward_fn` is independent across the :obj:`chunk_dim` this function will yield the same result as | |
| directly applying :obj:`forward_fn` to :obj:`input_tensors`. | |
| Args: | |
| forward_fn (:obj:`Callable[..., torch.Tensor]`): | |
| The forward function of the model. | |
| chunk_size (:obj:`int`): | |
| The chunk size of a chunked tensor: :obj:`num_chunks = len(input_tensors[0]) / chunk_size`. | |
| chunk_dim (:obj:`int`): | |
| The dimension over which the :obj:`input_tensors` should be chunked. | |
| input_tensors (:obj:`Tuple[torch.Tensor]`): | |
| The input tensors of ``forward_fn`` which will be chunked | |
| Returns: | |
| :obj:`torch.Tensor`: A tensor with the same shape as the :obj:`forward_fn` would have given if applied`. | |
| Examples:: | |
| # rename the usual forward() fn to forward_chunk() | |
| def forward_chunk(self, hidden_states): | |
| hidden_states = self.decoder(hidden_states) | |
| return hidden_states | |
| # implement a chunked forward function | |
| def forward(self, hidden_states): | |
| return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states) | |
| """ | |
| assert len(input_tensors) > 0, f"{input_tensors} has to be a tuple/list of tensors" | |
| tensor_shape = input_tensors[0].shape[chunk_dim] | |
| assert all( | |
| input_tensor.shape[chunk_dim] == tensor_shape for input_tensor in input_tensors | |
| ), "All input tenors have to be of the same shape" | |
| # inspect.signature exist since python 3.5 and is a python method -> no problem with backward compatibility | |
| num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters) | |
| if num_args_in_forward_chunk_fn != len(input_tensors): | |
| raise ValueError( | |
| f"forward_chunk_fn expects {num_args_in_forward_chunk_fn} arguments, but only {len(input_tensors)} input " | |
| "tensors are given" | |
| ) | |
| if chunk_size > 0: | |
| if input_tensors[0].shape[chunk_dim] % chunk_size != 0: | |
| raise ValueError( | |
| f"The dimension to be chunked {input_tensors[0].shape[chunk_dim]} has to be a multiple of the chunk " | |
| f"size {chunk_size}" | |
| ) | |
| num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size | |
| # chunk input tensor into tuples | |
| input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors) | |
| # apply forward fn to every tuple | |
| output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks)) | |
| # concatenate output at same dimension | |
| return torch.cat(output_chunks, dim=chunk_dim) | |
| return forward_fn(*input_tensors) | |