Spaces:
Sleeping
Sleeping
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Integrations with other Python libraries. | |
""" | |
import functools | |
import importlib.util | |
import numbers | |
import os | |
import sys | |
import tempfile | |
from pathlib import Path | |
from .file_utils import is_datasets_available | |
from .utils import logging | |
logger = logging.get_logger(__name__) | |
# comet_ml requires to be imported before any ML frameworks | |
_has_comet = importlib.util.find_spec("comet_ml") is not None and os.getenv("COMET_MODE", "").upper() != "DISABLED" | |
if _has_comet: | |
try: | |
import comet_ml # noqa: F401 | |
if hasattr(comet_ml, "config") and comet_ml.config.get_config("comet.api_key"): | |
_has_comet = True | |
else: | |
if os.getenv("COMET_MODE", "").upper() != "DISABLED": | |
logger.warning("comet_ml is installed but `COMET_API_KEY` is not set.") | |
_has_comet = False | |
except (ImportError, ValueError): | |
_has_comet = False | |
from .file_utils import ENV_VARS_TRUE_VALUES, is_torch_tpu_available # noqa: E402 | |
from .trainer_callback import ProgressCallback, TrainerCallback # noqa: E402 | |
from .trainer_utils import PREFIX_CHECKPOINT_DIR, BestRun, IntervalStrategy # noqa: E402 | |
# Integration functions: | |
def is_wandb_available(): | |
# any value of WANDB_DISABLED disables wandb | |
if os.getenv("WANDB_DISABLED", "").upper() in ENV_VARS_TRUE_VALUES: | |
logger.warning( | |
"Using the `WAND_DISABLED` environment variable is deprecated and will be removed in v5. Use the " | |
"--report_to flag to control the integrations used for logging result (for instance --report_to none)." | |
) | |
return False | |
return importlib.util.find_spec("wandb") is not None | |
def is_comet_available(): | |
return _has_comet | |
def is_tensorboard_available(): | |
return importlib.util.find_spec("tensorboard") is not None or importlib.util.find_spec("tensorboardX") is not None | |
def is_optuna_available(): | |
return importlib.util.find_spec("optuna") is not None | |
def is_ray_available(): | |
return importlib.util.find_spec("ray") is not None | |
def is_ray_tune_available(): | |
if not is_ray_available(): | |
return False | |
return importlib.util.find_spec("ray.tune") is not None | |
def is_azureml_available(): | |
if importlib.util.find_spec("azureml") is None: | |
return False | |
if importlib.util.find_spec("azureml.core") is None: | |
return False | |
return importlib.util.find_spec("azureml.core.run") is not None | |
def is_mlflow_available(): | |
return importlib.util.find_spec("mlflow") is not None | |
def is_fairscale_available(): | |
return importlib.util.find_spec("fairscale") is not None | |
def is_neptune_available(): | |
return importlib.util.find_spec("neptune") is not None | |
def is_codecarbon_available(): | |
return importlib.util.find_spec("codecarbon") is not None | |
def hp_params(trial): | |
if is_optuna_available(): | |
import optuna | |
if isinstance(trial, optuna.Trial): | |
return trial.params | |
if is_ray_tune_available(): | |
if isinstance(trial, dict): | |
return trial | |
raise RuntimeError(f"Unknown type for trial {trial.__class__}") | |
def default_hp_search_backend(): | |
if is_optuna_available(): | |
return "optuna" | |
elif is_ray_tune_available(): | |
return "ray" | |
def run_hp_search_optuna(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: | |
import optuna | |
def _objective(trial, checkpoint_dir=None): | |
checkpoint = None | |
if checkpoint_dir: | |
for subdir in os.listdir(checkpoint_dir): | |
if subdir.startswith(PREFIX_CHECKPOINT_DIR): | |
checkpoint = os.path.join(checkpoint_dir, subdir) | |
trainer.objective = None | |
trainer.train(resume_from_checkpoint=checkpoint, trial=trial) | |
# If there hasn't been any evaluation during the training loop. | |
if getattr(trainer, "objective", None) is None: | |
metrics = trainer.evaluate() | |
trainer.objective = trainer.compute_objective(metrics) | |
return trainer.objective | |
timeout = kwargs.pop("timeout", None) | |
n_jobs = kwargs.pop("n_jobs", 1) | |
study = optuna.create_study(direction=direction, **kwargs) | |
study.optimize(_objective, n_trials=n_trials, timeout=timeout, n_jobs=n_jobs) | |
best_trial = study.best_trial | |
return BestRun(str(best_trial.number), best_trial.value, best_trial.params) | |
def run_hp_search_ray(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: | |
import ray | |
def _objective(trial, local_trainer, checkpoint_dir=None): | |
try: | |
from transformers.utils.notebook import NotebookProgressCallback | |
if local_trainer.pop_callback(NotebookProgressCallback): | |
local_trainer.add_callback(ProgressCallback) | |
except ModuleNotFoundError: | |
pass | |
checkpoint = None | |
if checkpoint_dir: | |
for subdir in os.listdir(checkpoint_dir): | |
if subdir.startswith(PREFIX_CHECKPOINT_DIR): | |
checkpoint = os.path.join(checkpoint_dir, subdir) | |
local_trainer.objective = None | |
local_trainer.train(resume_from_checkpoint=checkpoint, trial=trial) | |
# If there hasn't been any evaluation during the training loop. | |
if getattr(local_trainer, "objective", None) is None: | |
metrics = local_trainer.evaluate() | |
local_trainer.objective = local_trainer.compute_objective(metrics) | |
local_trainer._tune_save_checkpoint() | |
ray.tune.report(objective=local_trainer.objective, **metrics, done=True) | |
if not trainer._memory_tracker.skip_memory_metrics: | |
from .trainer_utils import TrainerMemoryTracker | |
logger.warning( | |
"Memory tracking for your Trainer is currently " | |
"enabled. Automatically disabling the memory tracker " | |
"since the memory tracker is not serializable." | |
) | |
trainer._memory_tracker = TrainerMemoryTracker(skip_memory_metrics=True) | |
# The model and TensorBoard writer do not pickle so we have to remove them (if they exists) | |
# while doing the ray hp search. | |
_tb_writer = trainer.pop_callback(TensorBoardCallback) | |
trainer.model = None | |
# Setup default `resources_per_trial`. | |
if "resources_per_trial" not in kwargs: | |
# Default to 1 CPU and 1 GPU (if applicable) per trial. | |
kwargs["resources_per_trial"] = {"cpu": 1} | |
if trainer.args.n_gpu > 0: | |
kwargs["resources_per_trial"]["gpu"] = 1 | |
resource_msg = "1 CPU" + (" and 1 GPU" if trainer.args.n_gpu > 0 else "") | |
logger.info( | |
"No `resources_per_trial` arg was passed into " | |
"`hyperparameter_search`. Setting it to a default value " | |
f"of {resource_msg} for each trial." | |
) | |
# Make sure each trainer only uses GPUs that were allocated per trial. | |
gpus_per_trial = kwargs["resources_per_trial"].get("gpu", 0) | |
trainer.args._n_gpu = gpus_per_trial | |
# Setup default `progress_reporter`. | |
if "progress_reporter" not in kwargs: | |
from ray.tune import CLIReporter | |
kwargs["progress_reporter"] = CLIReporter(metric_columns=["objective"]) | |
if "keep_checkpoints_num" in kwargs and kwargs["keep_checkpoints_num"] > 0: | |
# `keep_checkpoints_num=0` would disabled checkpointing | |
trainer.use_tune_checkpoints = True | |
if kwargs["keep_checkpoints_num"] > 1: | |
logger.warning( | |
f"Currently keeping {kwargs['keep_checkpoints_num']} checkpoints for each trial. " | |
"Checkpoints are usually huge, " | |
"consider setting `keep_checkpoints_num=1`." | |
) | |
if "scheduler" in kwargs: | |
from ray.tune.schedulers import ASHAScheduler, HyperBandForBOHB, MedianStoppingRule, PopulationBasedTraining | |
# Check if checkpointing is enabled for PopulationBasedTraining | |
if isinstance(kwargs["scheduler"], PopulationBasedTraining): | |
if not trainer.use_tune_checkpoints: | |
logger.warning( | |
"You are using PopulationBasedTraining but you haven't enabled checkpointing. " | |
"This means your trials will train from scratch everytime they are exploiting " | |
"new configurations. Consider enabling checkpointing by passing " | |
"`keep_checkpoints_num=1` as an additional argument to `Trainer.hyperparameter_search`." | |
) | |
# Check for `do_eval` and `eval_during_training` for schedulers that require intermediate reporting. | |
if isinstance( | |
kwargs["scheduler"], (ASHAScheduler, MedianStoppingRule, HyperBandForBOHB, PopulationBasedTraining) | |
) and (not trainer.args.do_eval or trainer.args.evaluation_strategy == IntervalStrategy.NO): | |
raise RuntimeError( | |
"You are using {cls} as a scheduler but you haven't enabled evaluation during training. " | |
"This means your trials will not report intermediate results to Ray Tune, and " | |
"can thus not be stopped early or used to exploit other trials parameters. " | |
"If this is what you want, do not use {cls}. If you would like to use {cls}, " | |
"make sure you pass `do_eval=True` and `evaluation_strategy='steps'` in the " | |
"Trainer `args`.".format(cls=type(kwargs["scheduler"]).__name__) | |
) | |
trainable = ray.tune.with_parameters(_objective, local_trainer=trainer) | |
def dynamic_modules_import_trainable(*args, **kwargs): | |
""" | |
Wrapper around ``tune.with_parameters`` to ensure datasets_modules are loaded on each Actor. | |
Without this, an ImportError will be thrown. See https://github.com/huggingface/transformers/issues/11565. | |
Assumes that ``_objective``, defined above, is a function. | |
""" | |
if is_datasets_available(): | |
import datasets.load | |
dynamic_modules_path = os.path.join(datasets.load.init_dynamic_modules(), "__init__.py") | |
# load dynamic_modules from path | |
spec = importlib.util.spec_from_file_location("datasets_modules", dynamic_modules_path) | |
datasets_modules = importlib.util.module_from_spec(spec) | |
sys.modules[spec.name] = datasets_modules | |
spec.loader.exec_module(datasets_modules) | |
return trainable(*args, **kwargs) | |
# special attr set by tune.with_parameters | |
if hasattr(trainable, "__mixins__"): | |
dynamic_modules_import_trainable.__mixins__ = trainable.__mixins__ | |
analysis = ray.tune.run( | |
dynamic_modules_import_trainable, | |
config=trainer.hp_space(None), | |
num_samples=n_trials, | |
**kwargs, | |
) | |
best_trial = analysis.get_best_trial(metric="objective", mode=direction[:3]) | |
best_run = BestRun(best_trial.trial_id, best_trial.last_result["objective"], best_trial.config) | |
if _tb_writer is not None: | |
trainer.add_callback(_tb_writer) | |
return best_run | |
def get_available_reporting_integrations(): | |
integrations = [] | |
if is_azureml_available(): | |
integrations.append("azure_ml") | |
if is_comet_available(): | |
integrations.append("comet_ml") | |
if is_mlflow_available(): | |
integrations.append("mlflow") | |
if is_tensorboard_available(): | |
integrations.append("tensorboard") | |
if is_wandb_available(): | |
integrations.append("wandb") | |
if is_codecarbon_available(): | |
integrations.append("codecarbon") | |
return integrations | |
def rewrite_logs(d): | |
new_d = {} | |
eval_prefix = "eval_" | |
eval_prefix_len = len(eval_prefix) | |
for k, v in d.items(): | |
if k.startswith(eval_prefix): | |
new_d["eval/" + k[eval_prefix_len:]] = v | |
else: | |
new_d["train/" + k] = v | |
return new_d | |
class TensorBoardCallback(TrainerCallback): | |
""" | |
A :class:`~transformers.TrainerCallback` that sends the logs to `TensorBoard | |
<https://www.tensorflow.org/tensorboard>`__. | |
Args: | |
tb_writer (:obj:`SummaryWriter`, `optional`): | |
The writer to use. Will instantiate one if not set. | |
""" | |
def __init__(self, tb_writer=None): | |
has_tensorboard = is_tensorboard_available() | |
assert ( | |
has_tensorboard | |
), "TensorBoardCallback requires tensorboard to be installed. Either update your PyTorch version or install tensorboardX." | |
if has_tensorboard: | |
try: | |
from torch.utils.tensorboard import SummaryWriter # noqa: F401 | |
self._SummaryWriter = SummaryWriter | |
except ImportError: | |
try: | |
from tensorboardX import SummaryWriter | |
self._SummaryWriter = SummaryWriter | |
except ImportError: | |
self._SummaryWriter = None | |
else: | |
self._SummaryWriter = None | |
self.tb_writer = tb_writer | |
def _init_summary_writer(self, args, log_dir=None): | |
log_dir = log_dir or args.logging_dir | |
if self._SummaryWriter is not None: | |
self.tb_writer = self._SummaryWriter(log_dir=log_dir) | |
def on_train_begin(self, args, state, control, **kwargs): | |
if not state.is_world_process_zero: | |
return | |
log_dir = None | |
if state.is_hyper_param_search: | |
trial_name = state.trial_name | |
if trial_name is not None: | |
log_dir = os.path.join(args.logging_dir, trial_name) | |
self._init_summary_writer(args, log_dir) | |
if self.tb_writer is not None: | |
self.tb_writer.add_text("args", args.to_json_string()) | |
if "model" in kwargs: | |
model = kwargs["model"] | |
if hasattr(model, "config") and model.config is not None: | |
model_config_json = model.config.to_json_string() | |
self.tb_writer.add_text("model_config", model_config_json) | |
# Version of TensorBoard coming from tensorboardX does not have this method. | |
if hasattr(self.tb_writer, "add_hparams"): | |
self.tb_writer.add_hparams(args.to_sanitized_dict(), metric_dict={}) | |
def on_log(self, args, state, control, logs=None, **kwargs): | |
if not state.is_world_process_zero: | |
return | |
if self.tb_writer is None: | |
self._init_summary_writer(args) | |
if self.tb_writer is not None: | |
logs = rewrite_logs(logs) | |
for k, v in logs.items(): | |
if isinstance(v, (int, float)): | |
self.tb_writer.add_scalar(k, v, state.global_step) | |
else: | |
logger.warning( | |
"Trainer is attempting to log a value of " | |
f'"{v}" of type {type(v)} for key "{k}" as a scalar. ' | |
"This invocation of Tensorboard's writer.add_scalar() " | |
"is incorrect so we dropped this attribute." | |
) | |
self.tb_writer.flush() | |
def on_train_end(self, args, state, control, **kwargs): | |
if self.tb_writer: | |
self.tb_writer.close() | |
class WandbCallback(TrainerCallback): | |
""" | |
A :class:`~transformers.TrainerCallback` that sends the logs to `Weight and Biases <https://www.wandb.com/>`__. | |
""" | |
def __init__(self): | |
has_wandb = is_wandb_available() | |
assert has_wandb, "WandbCallback requires wandb to be installed. Run `pip install wandb`." | |
if has_wandb: | |
import wandb | |
self._wandb = wandb | |
self._initialized = False | |
# log outputs | |
self._log_model = os.getenv("WANDB_LOG_MODEL", "FALSE").upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"}) | |
def setup(self, args, state, model, **kwargs): | |
""" | |
Setup the optional Weights & Biases (`wandb`) integration. | |
One can subclass and override this method to customize the setup if needed. Find more information `here | |
<https://docs.wandb.ai/integrations/huggingface>`__. You can also override the following environment variables: | |
Environment: | |
WANDB_LOG_MODEL (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not to log model as artifact at the end of training. Use along with | |
`TrainingArguments.load_best_model_at_end` to upload best model. | |
WANDB_WATCH (:obj:`str`, `optional` defaults to :obj:`"gradients"`): | |
Can be :obj:`"gradients"`, :obj:`"all"` or :obj:`"false"`. Set to :obj:`"false"` to disable gradient | |
logging or :obj:`"all"` to log gradients and parameters. | |
WANDB_PROJECT (:obj:`str`, `optional`, defaults to :obj:`"huggingface"`): | |
Set this to a custom string to store results in a different project. | |
WANDB_DISABLED (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not to disable wandb entirely. Set `WANDB_DISABLED=true` to disable. | |
""" | |
if self._wandb is None: | |
return | |
self._initialized = True | |
if state.is_world_process_zero: | |
logger.info( | |
'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"' | |
) | |
combined_dict = {**args.to_sanitized_dict()} | |
if hasattr(model, "config") and model.config is not None: | |
model_config = model.config.to_dict() | |
combined_dict = {**model_config, **combined_dict} | |
trial_name = state.trial_name | |
init_args = {} | |
if trial_name is not None: | |
run_name = trial_name | |
init_args["group"] = args.run_name | |
else: | |
run_name = args.run_name | |
if self._wandb.run is None: | |
self._wandb.init( | |
project=os.getenv("WANDB_PROJECT", "huggingface"), | |
name=run_name, | |
**init_args, | |
) | |
# add config parameters (run may have been created manually) | |
self._wandb.config.update(combined_dict, allow_val_change=True) | |
# define default x-axis (for latest wandb versions) | |
if getattr(self._wandb, "define_metric", None): | |
self._wandb.define_metric("train/global_step") | |
self._wandb.define_metric("*", step_metric="train/global_step", step_sync=True) | |
# keep track of model topology and gradients, unsupported on TPU | |
if not is_torch_tpu_available() and os.getenv("WANDB_WATCH") != "false": | |
self._wandb.watch( | |
model, log=os.getenv("WANDB_WATCH", "gradients"), log_freq=max(100, args.logging_steps) | |
) | |
def on_train_begin(self, args, state, control, model=None, **kwargs): | |
if self._wandb is None: | |
return | |
hp_search = state.is_hyper_param_search | |
if hp_search: | |
self._wandb.finish() | |
self._initialized = False | |
if not self._initialized: | |
self.setup(args, state, model, **kwargs) | |
def on_train_end(self, args, state, control, model=None, tokenizer=None, **kwargs): | |
if self._wandb is None: | |
return | |
if self._log_model and self._initialized and state.is_world_process_zero: | |
from .trainer import Trainer | |
fake_trainer = Trainer(args=args, model=model, tokenizer=tokenizer) | |
with tempfile.TemporaryDirectory() as temp_dir: | |
fake_trainer.save_model(temp_dir) | |
metadata = ( | |
{ | |
k: v | |
for k, v in dict(self._wandb.summary).items() | |
if isinstance(v, numbers.Number) and not k.startswith("_") | |
} | |
if not args.load_best_model_at_end | |
else { | |
f"eval/{args.metric_for_best_model}": state.best_metric, | |
"train/total_floss": state.total_flos, | |
} | |
) | |
artifact = self._wandb.Artifact(name=f"model-{self._wandb.run.id}", type="model", metadata=metadata) | |
for f in Path(temp_dir).glob("*"): | |
if f.is_file(): | |
with artifact.new_file(f.name, mode="wb") as fa: | |
fa.write(f.read_bytes()) | |
self._wandb.run.log_artifact(artifact) | |
def on_log(self, args, state, control, model=None, logs=None, **kwargs): | |
if self._wandb is None: | |
return | |
if not self._initialized: | |
self.setup(args, state, model) | |
if state.is_world_process_zero: | |
logs = rewrite_logs(logs) | |
self._wandb.log({**logs, "train/global_step": state.global_step}) | |
class CometCallback(TrainerCallback): | |
""" | |
A :class:`~transformers.TrainerCallback` that sends the logs to `Comet ML <https://www.comet.ml/site/>`__. | |
""" | |
def __init__(self): | |
assert _has_comet, "CometCallback requires comet-ml to be installed. Run `pip install comet-ml`." | |
self._initialized = False | |
def setup(self, args, state, model): | |
""" | |
Setup the optional Comet.ml integration. | |
Environment: | |
COMET_MODE (:obj:`str`, `optional`): | |
"OFFLINE", "ONLINE", or "DISABLED" | |
COMET_PROJECT_NAME (:obj:`str`, `optional`): | |
Comet.ml project name for experiments | |
COMET_OFFLINE_DIRECTORY (:obj:`str`, `optional`): | |
Folder to use for saving offline experiments when :obj:`COMET_MODE` is "OFFLINE" | |
For a number of configurable items in the environment, see `here | |
<https://www.comet.ml/docs/python-sdk/advanced/#comet-configuration-variables>`__. | |
""" | |
self._initialized = True | |
if state.is_world_process_zero: | |
comet_mode = os.getenv("COMET_MODE", "ONLINE").upper() | |
args = {"project_name": os.getenv("COMET_PROJECT_NAME", "huggingface")} | |
experiment = None | |
if comet_mode == "ONLINE": | |
experiment = comet_ml.Experiment(**args) | |
logger.info("Automatic Comet.ml online logging enabled") | |
elif comet_mode == "OFFLINE": | |
args["offline_directory"] = os.getenv("COMET_OFFLINE_DIRECTORY", "./") | |
experiment = comet_ml.OfflineExperiment(**args) | |
logger.info("Automatic Comet.ml offline logging enabled; use `comet upload` when finished") | |
if experiment is not None: | |
experiment._set_model_graph(model, framework="transformers") | |
experiment._log_parameters(args, prefix="args/", framework="transformers") | |
if hasattr(model, "config"): | |
experiment._log_parameters(model.config, prefix="config/", framework="transformers") | |
def on_train_begin(self, args, state, control, model=None, **kwargs): | |
if not self._initialized: | |
self.setup(args, state, model) | |
def on_log(self, args, state, control, model=None, logs=None, **kwargs): | |
if not self._initialized: | |
self.setup(args, state, model) | |
if state.is_world_process_zero: | |
experiment = comet_ml.config.get_global_experiment() | |
if experiment is not None: | |
experiment._log_metrics(logs, step=state.global_step, epoch=state.epoch, framework="transformers") | |
class AzureMLCallback(TrainerCallback): | |
""" | |
A :class:`~transformers.TrainerCallback` that sends the logs to `AzureML | |
<https://pypi.org/project/azureml-sdk/>`__. | |
""" | |
def __init__(self, azureml_run=None): | |
assert ( | |
is_azureml_available() | |
), "AzureMLCallback requires azureml to be installed. Run `pip install azureml-sdk`." | |
self.azureml_run = azureml_run | |
def on_init_end(self, args, state, control, **kwargs): | |
from azureml.core.run import Run | |
if self.azureml_run is None and state.is_world_process_zero: | |
self.azureml_run = Run.get_context() | |
def on_log(self, args, state, control, logs=None, **kwargs): | |
if self.azureml_run: | |
for k, v in logs.items(): | |
if isinstance(v, (int, float)): | |
self.azureml_run.log(k, v, description=k) | |
class MLflowCallback(TrainerCallback): | |
""" | |
A :class:`~transformers.TrainerCallback` that sends the logs to `MLflow <https://www.mlflow.org/>`__. | |
""" | |
def __init__(self): | |
assert is_mlflow_available(), "MLflowCallback requires mlflow to be installed. Run `pip install mlflow`." | |
import mlflow | |
self._MAX_PARAM_VAL_LENGTH = mlflow.utils.validation.MAX_PARAM_VAL_LENGTH | |
self._MAX_PARAMS_TAGS_PER_BATCH = mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH | |
self._initialized = False | |
self._log_artifacts = False | |
self._ml_flow = mlflow | |
def setup(self, args, state, model): | |
""" | |
Setup the optional MLflow integration. | |
Environment: | |
HF_MLFLOW_LOG_ARTIFACTS (:obj:`str`, `optional`): | |
Whether to use MLflow .log_artifact() facility to log artifacts. | |
This only makes sense if logging to a remote server, e.g. s3 or GCS. If set to `True` or `1`, will copy | |
whatever is in :class:`~transformers.TrainingArguments`'s ``output_dir`` to the local or remote | |
artifact storage. Using it without a remote storage will just copy the files to your artifact location. | |
""" | |
log_artifacts = os.getenv("HF_MLFLOW_LOG_ARTIFACTS", "FALSE").upper() | |
if log_artifacts in {"TRUE", "1"}: | |
self._log_artifacts = True | |
if state.is_world_process_zero: | |
self._ml_flow.start_run() | |
combined_dict = args.to_dict() | |
if hasattr(model, "config") and model.config is not None: | |
model_config = model.config.to_dict() | |
combined_dict = {**model_config, **combined_dict} | |
# remove params that are too long for MLflow | |
for name, value in list(combined_dict.items()): | |
# internally, all values are converted to str in MLflow | |
if len(str(value)) > self._MAX_PARAM_VAL_LENGTH: | |
logger.warning( | |
f"Trainer is attempting to log a value of " | |
f'"{value}" for key "{name}" as a parameter. ' | |
f"MLflow's log_param() only accepts values no longer than " | |
f"250 characters so we dropped this attribute." | |
) | |
del combined_dict[name] | |
# MLflow cannot log more than 100 values in one go, so we have to split it | |
combined_dict_items = list(combined_dict.items()) | |
for i in range(0, len(combined_dict_items), self._MAX_PARAMS_TAGS_PER_BATCH): | |
self._ml_flow.log_params(dict(combined_dict_items[i : i + self._MAX_PARAMS_TAGS_PER_BATCH])) | |
self._initialized = True | |
def on_train_begin(self, args, state, control, model=None, **kwargs): | |
if not self._initialized: | |
self.setup(args, state, model) | |
def on_log(self, args, state, control, logs, model=None, **kwargs): | |
if not self._initialized: | |
self.setup(args, state, model) | |
if state.is_world_process_zero: | |
for k, v in logs.items(): | |
if isinstance(v, (int, float)): | |
self._ml_flow.log_metric(k, v, step=state.global_step) | |
else: | |
logger.warning( | |
f"Trainer is attempting to log a value of " | |
f'"{v}" of type {type(v)} for key "{k}" as a metric. ' | |
f"MLflow's log_metric() only accepts float and " | |
f"int types so we dropped this attribute." | |
) | |
def on_train_end(self, args, state, control, **kwargs): | |
if self._initialized and state.is_world_process_zero: | |
if self._log_artifacts: | |
logger.info("Logging artifacts. This may take time.") | |
self._ml_flow.log_artifacts(args.output_dir) | |
def __del__(self): | |
# if the previous run is not terminated correctly, the fluent API will | |
# not let you start a new run before the previous one is killed | |
if self._ml_flow.active_run is not None: | |
self._ml_flow.end_run() | |
class NeptuneCallback(TrainerCallback): | |
""" | |
A :class:`~transformers.TrainerCallback` that sends the logs to `Neptune <https://neptune.ai>`. | |
""" | |
def __init__(self): | |
assert ( | |
is_neptune_available() | |
), "NeptuneCallback requires neptune-client to be installed. Run `pip install neptune-client`." | |
import neptune.new as neptune | |
self._neptune = neptune | |
self._initialized = False | |
self._log_artifacts = False | |
def setup(self, args, state, model): | |
""" | |
Setup the Neptune integration. | |
Environment: | |
NEPTUNE_PROJECT (:obj:`str`, `required`): | |
The project ID for neptune.ai account. Should be in format `workspace_name/project_name` | |
NEPTUNE_API_TOKEN (:obj:`str`, `required`): | |
API-token for neptune.ai account | |
NEPTUNE_CONNECTION_MODE (:obj:`str`, `optional`): | |
Neptune connection mode. `async` by default | |
NEPTUNE_RUN_NAME (:obj:`str`, `optional`): | |
The name of run process on Neptune dashboard | |
""" | |
if state.is_world_process_zero: | |
self._neptune_run = self._neptune.init( | |
project=os.getenv("NEPTUNE_PROJECT"), | |
api_token=os.getenv("NEPTUNE_API_TOKEN"), | |
mode=os.getenv("NEPTUNE_CONNECTION_MODE", "async"), | |
name=os.getenv("NEPTUNE_RUN_NAME", None), | |
) | |
combined_dict = args.to_dict() | |
if hasattr(model, "config") and model.config is not None: | |
model_config = model.config.to_dict() | |
combined_dict = {**model_config, **combined_dict} | |
self._neptune_run["parameters"] = combined_dict | |
self._initialized = True | |
def on_train_begin(self, args, state, control, model=None, **kwargs): | |
if not self._initialized: | |
self.setup(args, state, model) | |
def on_log(self, args, state, control, logs, model=None, **kwargs): | |
if not self._initialized: | |
self.setup(args, state, model) | |
if state.is_world_process_zero: | |
for k, v in logs.items(): | |
self._neptune_run[k].log(v, step=state.global_step) | |
def __del__(self): | |
""" | |
Environment: | |
NEPTUNE_STOP_TIMEOUT (:obj:`int`, `optional`): | |
Number of seconsds to wait for all Neptune.ai tracking calls to finish, before stopping the tracked | |
run. If not set it will wait for all tracking calls to finish. | |
""" | |
try: | |
stop_timeout = os.getenv("NEPTUNE_STOP_TIMEOUT") | |
stop_timeout = int(stop_timeout) if stop_timeout else None | |
self._neptune_run.stop(seconds=stop_timeout) | |
except AttributeError: | |
pass | |
class CodeCarbonCallback(TrainerCallback): | |
""" | |
A :class:`~transformers.TrainerCallback` that tracks the CO2 emission of training. | |
""" | |
def __init__(self): | |
assert ( | |
is_codecarbon_available() | |
), "CodeCarbonCallback requires `codecarbon` to be installed. Run `pip install codecarbon`." | |
import codecarbon | |
self._codecarbon = codecarbon | |
self.tracker = None | |
def on_init_end(self, args, state, control, **kwargs): | |
if self.tracker is None and state.is_local_process_zero: | |
# CodeCarbon will automatically handle environment variables for configuration | |
self.tracker = self._codecarbon.EmissionsTracker(output_dir=args.output_dir) | |
def on_train_begin(self, args, state, control, model=None, **kwargs): | |
if self.tracker and state.is_local_process_zero: | |
self.tracker.start() | |
def on_train_end(self, args, state, control, **kwargs): | |
if self.tracker and state.is_local_process_zero: | |
self.tracker.stop() | |
INTEGRATION_TO_CALLBACK = { | |
"azure_ml": AzureMLCallback, | |
"comet_ml": CometCallback, | |
"mlflow": MLflowCallback, | |
"neptune": NeptuneCallback, | |
"tensorboard": TensorBoardCallback, | |
"wandb": WandbCallback, | |
"codecarbon": CodeCarbonCallback, | |
} | |
def get_reporting_integration_callbacks(report_to): | |
for integration in report_to: | |
if integration not in INTEGRATION_TO_CALLBACK: | |
raise ValueError( | |
f"{integration} is not supported, only {', '.join(INTEGRATION_TO_CALLBACK.keys())} are supported." | |
) | |
return [INTEGRATION_TO_CALLBACK[integration] for integration in report_to] | |