Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
import PIL.Image | |
from .file_utils import _is_torch, is_torch_available | |
IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406] | |
IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225] | |
def is_torch_tensor(obj): | |
return _is_torch(obj) if is_torch_available() else False | |
# In the future we can add a TF implementation here when we have TF models. | |
class ImageFeatureExtractionMixin: | |
""" | |
Mixin that contain utilities for preparing image features. | |
""" | |
def _ensure_format_supported(self, image): | |
if not isinstance(image, (PIL.Image.Image, np.ndarray)) and not is_torch_tensor(image): | |
raise ValueError( | |
f"Got type {type(image)} which is not supported, only `PIL.Image.Image`, `np.array` and " | |
"`torch.Tensor` are." | |
) | |
def to_pil_image(self, image, rescale=None): | |
""" | |
Converts :obj:`image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last | |
axis if needed. | |
Args: | |
image (:obj:`PIL.Image.Image` or :obj:`numpy.ndarray` or :obj:`torch.Tensor`): | |
The image to convert to the PIL Image format. | |
rescale (:obj:`bool`, `optional`): | |
Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will | |
default to :obj:`True` if the image type is a floating type, :obj:`False` otherwise. | |
""" | |
self._ensure_format_supported(image) | |
if is_torch_tensor(image): | |
image = image.numpy() | |
if isinstance(image, np.ndarray): | |
if rescale is None: | |
# rescale default to the array being of floating type. | |
rescale = isinstance(image.flat[0], np.floating) | |
# If the channel as been moved to first dim, we put it back at the end. | |
if image.ndim == 3 and image.shape[0] in [1, 3]: | |
image = image.transpose(1, 2, 0) | |
if rescale: | |
image = image * 255 | |
image = image.astype(np.uint8) | |
return PIL.Image.fromarray(image) | |
return image | |
def to_numpy_array(self, image, rescale=None, channel_first=True): | |
""" | |
Converts :obj:`image` to a numpy array. Optionally rescales it and puts the channel dimension as the first | |
dimension. | |
Args: | |
image (:obj:`PIL.Image.Image` or :obj:`np.ndarray` or :obj:`torch.Tensor`): | |
The image to convert to a NumPy array. | |
rescale (:obj:`bool`, `optional`): | |
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Will | |
default to :obj:`True` if the image is a PIL Image or an array/tensor of integers, :obj:`False` | |
otherwise. | |
channel_first (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Whether or not to permute the dimensions of the image to put the channel dimension first. | |
""" | |
self._ensure_format_supported(image) | |
if isinstance(image, PIL.Image.Image): | |
image = np.array(image) | |
if is_torch_tensor(image): | |
image = image.numpy() | |
if rescale is None: | |
rescale = isinstance(image.flat[0], np.integer) | |
if rescale: | |
image = image.astype(np.float32) / 255.0 | |
if channel_first: | |
image = image.transpose(2, 0, 1) | |
return image | |
def normalize(self, image, mean, std): | |
""" | |
Normalizes :obj:`image` with :obj:`mean` and :obj:`std`. Note that this will trigger a conversion of | |
:obj:`image` to a NumPy array if it's a PIL Image. | |
Args: | |
image (:obj:`PIL.Image.Image` or :obj:`np.ndarray` or :obj:`torch.Tensor`): | |
The image to normalize. | |
mean (:obj:`List[float]` or :obj:`np.ndarray` or :obj:`torch.Tensor`): | |
The mean (per channel) to use for normalization. | |
std (:obj:`List[float]` or :obj:`np.ndarray` or :obj:`torch.Tensor`): | |
The standard deviation (per channel) to use for normalization. | |
""" | |
self._ensure_format_supported(image) | |
if isinstance(image, PIL.Image.Image): | |
image = self.to_numpy_array(image) | |
if isinstance(image, np.ndarray): | |
if not isinstance(mean, np.ndarray): | |
mean = np.array(mean).astype(image.dtype) | |
if not isinstance(std, np.ndarray): | |
std = np.array(std).astype(image.dtype) | |
elif is_torch_tensor(image): | |
import torch | |
if not isinstance(mean, torch.Tensor): | |
mean = torch.tensor(mean) | |
if not isinstance(std, torch.Tensor): | |
std = torch.tensor(std) | |
if image.ndim == 3 and image.shape[0] in [1, 3]: | |
return (image - mean[:, None, None]) / std[:, None, None] | |
else: | |
return (image - mean) / std | |
def resize(self, image, size, resample=PIL.Image.BILINEAR): | |
""" | |
Resizes :obj:`image`. Note that this will trigger a conversion of :obj:`image` to a PIL Image. | |
Args: | |
image (:obj:`PIL.Image.Image` or :obj:`np.ndarray` or :obj:`torch.Tensor`): | |
The image to resize. | |
size (:obj:`int` or :obj:`Tuple[int, int]`): | |
The size to use for resizing the image. | |
resample (:obj:`int`, `optional`, defaults to :obj:`PIL.Image.BILINEAR`): | |
The filter to user for resampling. | |
""" | |
self._ensure_format_supported(image) | |
if not isinstance(size, tuple): | |
size = (size, size) | |
if not isinstance(image, PIL.Image.Image): | |
image = self.to_pil_image(image) | |
return image.resize(size, resample=resample) | |
def center_crop(self, image, size): | |
""" | |
Crops :obj:`image` to the given size using a center crop. Note that if the image is too small to be cropped to | |
the size given, it will be padded (so the returned result has the size asked). | |
Args: | |
image (:obj:`PIL.Image.Image` or :obj:`np.ndarray` or :obj:`torch.Tensor`): | |
The image to resize. | |
size (:obj:`int` or :obj:`Tuple[int, int]`): | |
The size to which crop the image. | |
""" | |
self._ensure_format_supported(image) | |
if not isinstance(size, tuple): | |
size = (size, size) | |
# PIL Image.size is (width, height) but NumPy array and torch Tensors have (height, width) | |
image_shape = (image.size[1], image.size[0]) if isinstance(image, PIL.Image.Image) else image.shape[-2:] | |
top = (image_shape[0] - size[0]) // 2 | |
bottom = top + size[0] # In case size is odd, (image_shape[0] + size[0]) // 2 won't give the proper result. | |
left = (image_shape[1] - size[1]) // 2 | |
right = left + size[1] # In case size is odd, (image_shape[1] + size[1]) // 2 won't give the proper result. | |
# For PIL Images we have a method to crop directly. | |
if isinstance(image, PIL.Image.Image): | |
return image.crop((left, top, right, bottom)) | |
# Check if all the dimensions are inside the image. | |
if top >= 0 and bottom <= image_shape[0] and left >= 0 and right <= image_shape[1]: | |
return image[..., top:bottom, left:right] | |
# Otherwise, we may need to pad if the image is too small. Oh joy... | |
new_shape = image.shape[:-2] + (max(size[0], image_shape[0]), max(size[1], image_shape[1])) | |
if isinstance(image, np.ndarray): | |
new_image = np.zeros_like(image, shape=new_shape) | |
elif is_torch_tensor(image): | |
new_image = image.new_zeros(new_shape) | |
top_pad = (new_shape[-2] - image_shape[0]) // 2 | |
bottom_pad = top_pad + image_shape[0] | |
left_pad = (new_shape[-1] - image_shape[1]) // 2 | |
right_pad = left_pad + image_shape[1] | |
new_image[..., top_pad:bottom_pad, left_pad:right_pad] = image | |
top += top_pad | |
bottom += top_pad | |
left += left_pad | |
right += left_pad | |
return new_image[ | |
..., max(0, top) : min(new_image.shape[-2], bottom), max(0, left) : min(new_image.shape[-1], right) | |
] | |