Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2018 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Utilities to convert slow tokenizers in their fast tokenizers counterparts. | |
All the conversions are grouped here to gather SentencePiece dependencies outside of the fast tokenizers files and | |
allow to make our dependency on SentencePiece optional. | |
""" | |
from typing import Dict, List, Tuple | |
from tokenizers import Regex, Tokenizer, decoders, normalizers, pre_tokenizers, processors | |
from tokenizers.models import BPE, Unigram, WordPiece | |
from .file_utils import requires_backends | |
class SentencePieceExtractor: | |
""" | |
Extractor implementation for SentencePiece trained models. https://github.com/google/sentencepiece | |
""" | |
def __init__(self, model: str): | |
requires_backends(self, "sentencepiece") | |
from sentencepiece import SentencePieceProcessor | |
self.sp = SentencePieceProcessor() | |
self.sp.Load(model) | |
def extract(self) -> Tuple[Dict[str, int], List[Tuple]]: | |
sp = self.sp | |
vocab = {sp.id_to_piece(index): index for index in range(sp.GetPieceSize())} | |
# Merges | |
merges = [] | |
for piece_l in vocab.keys(): | |
for piece_r in vocab.keys(): | |
merge = f"{piece_l}{piece_r}" | |
piece_id = vocab.get(merge, None) | |
if piece_id: | |
merges += [(piece_l, piece_r, piece_id)] | |
merges = sorted(merges, key=lambda val: val[2]) | |
merges = [(val[0], val[1]) for val in merges] | |
return vocab, merges | |
def check_number_comma(piece: str) -> bool: | |
return len(piece) < 2 or piece[-1] != "," or not piece[-2].isdigit() | |
class Converter: | |
def __init__(self, original_tokenizer): | |
self.original_tokenizer = original_tokenizer | |
def converted(self) -> Tokenizer: | |
raise NotImplementedError() | |
class BertConverter(Converter): | |
def converted(self) -> Tokenizer: | |
vocab = self.original_tokenizer.vocab | |
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token))) | |
tokenize_chinese_chars = False | |
strip_accents = False | |
do_lower_case = False | |
if hasattr(self.original_tokenizer, "basic_tokenizer"): | |
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars | |
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents | |
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case | |
tokenizer.normalizer = normalizers.BertNormalizer( | |
clean_text=True, | |
handle_chinese_chars=tokenize_chinese_chars, | |
strip_accents=strip_accents, | |
lowercase=do_lower_case, | |
) | |
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() | |
cls = str(self.original_tokenizer.cls_token) | |
sep = str(self.original_tokenizer.sep_token) | |
cls_token_id = self.original_tokenizer.cls_token_id | |
sep_token_id = self.original_tokenizer.sep_token_id | |
tokenizer.post_processor = processors.TemplateProcessing( | |
single=f"{cls}:0 $A:0 {sep}:0", | |
pair=f"{cls}:0 $A:0 {sep}:0 $B:1 {sep}:1", | |
special_tokens=[ | |
(cls, cls_token_id), | |
(sep, sep_token_id), | |
], | |
) | |
tokenizer.decoder = decoders.WordPiece(prefix="##") | |
return tokenizer | |
class FunnelConverter(Converter): | |
def converted(self) -> Tokenizer: | |
vocab = self.original_tokenizer.vocab | |
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token))) | |
tokenize_chinese_chars = False | |
strip_accents = False | |
do_lower_case = False | |
if hasattr(self.original_tokenizer, "basic_tokenizer"): | |
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars | |
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents | |
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case | |
tokenizer.normalizer = normalizers.BertNormalizer( | |
clean_text=True, | |
handle_chinese_chars=tokenize_chinese_chars, | |
strip_accents=strip_accents, | |
lowercase=do_lower_case, | |
) | |
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() | |
cls = str(self.original_tokenizer.cls_token) | |
sep = str(self.original_tokenizer.sep_token) | |
cls_token_id = self.original_tokenizer.cls_token_id | |
sep_token_id = self.original_tokenizer.sep_token_id | |
tokenizer.post_processor = processors.TemplateProcessing( | |
single=f"{cls}:2 $A:0 {sep}:0", # token_type_id is 2 for Funnel transformer | |
pair=f"{cls}:2 $A:0 {sep}:0 $B:1 {sep}:1", | |
special_tokens=[ | |
(cls, cls_token_id), | |
(sep, sep_token_id), | |
], | |
) | |
tokenizer.decoder = decoders.WordPiece(prefix="##") | |
return tokenizer | |
class MPNetConverter(Converter): | |
def converted(self) -> Tokenizer: | |
vocab = self.original_tokenizer.vocab | |
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token))) | |
tokenize_chinese_chars = False | |
strip_accents = False | |
do_lower_case = False | |
if hasattr(self.original_tokenizer, "basic_tokenizer"): | |
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars | |
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents | |
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case | |
tokenizer.normalizer = normalizers.BertNormalizer( | |
clean_text=True, | |
handle_chinese_chars=tokenize_chinese_chars, | |
strip_accents=strip_accents, | |
lowercase=do_lower_case, | |
) | |
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() | |
cls = str(self.original_tokenizer.cls_token) | |
sep = str(self.original_tokenizer.sep_token) | |
cls_token_id = self.original_tokenizer.cls_token_id | |
sep_token_id = self.original_tokenizer.sep_token_id | |
tokenizer.post_processor = processors.TemplateProcessing( | |
single=f"{cls}:0 $A:0 {sep}:0", | |
pair=f"{cls}:0 $A:0 {sep}:0 {sep}:0 $B:1 {sep}:1", # MPNet uses two [SEP] tokens | |
special_tokens=[ | |
(cls, cls_token_id), | |
(sep, sep_token_id), | |
], | |
) | |
tokenizer.decoder = decoders.WordPiece(prefix="##") | |
return tokenizer | |
class OpenAIGPTConverter(Converter): | |
def converted(self) -> Tokenizer: | |
vocab = self.original_tokenizer.encoder | |
merges = list(self.original_tokenizer.bpe_ranks.keys()) | |
unk_token = self.original_tokenizer.unk_token | |
tokenizer = Tokenizer( | |
BPE( | |
vocab=vocab, | |
merges=merges, | |
dropout=None, | |
unk_token=str(unk_token), | |
end_of_word_suffix="</w>", | |
fuse_unk=False, | |
) | |
) | |
if tokenizer.token_to_id(str(unk_token)) is not None: | |
tokenizer.add_special_tokens([str(unk_token)]) | |
tokenizer.normalizer = normalizers.BertNormalizer(lowercase=True) | |
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() | |
tokenizer.decoder = decoders.BPEDecoder(suffix="</w>") | |
return tokenizer | |
class GPT2Converter(Converter): | |
def converted(self) -> Tokenizer: | |
vocab = self.original_tokenizer.encoder | |
merges = list(self.original_tokenizer.bpe_ranks.keys()) | |
tokenizer = Tokenizer( | |
BPE( | |
vocab=vocab, | |
merges=merges, | |
dropout=None, | |
continuing_subword_prefix="", | |
end_of_word_suffix="", | |
fuse_unk=False, | |
) | |
) | |
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=self.original_tokenizer.add_prefix_space) | |
tokenizer.decoder = decoders.ByteLevel() | |
tokenizer.post_processor = processors.ByteLevel(trim_offsets=False) | |
return tokenizer | |
class HerbertConverter(Converter): | |
def converted(self) -> Tokenizer: | |
tokenizer_info_str = "#version:" | |
token_suffix = "</w>" | |
vocab = self.original_tokenizer.encoder | |
merges = list(self.original_tokenizer.bpe_ranks.keys()) | |
if tokenizer_info_str in merges[0][0]: | |
merges = merges[1:] | |
tokenizer = Tokenizer( | |
BPE( | |
vocab, | |
merges, | |
dropout=None, | |
unk_token=self.original_tokenizer.unk_token, | |
end_of_word_suffix=token_suffix, | |
) | |
) | |
tokenizer.normalizer = normalizers.BertNormalizer(lowercase=False, strip_accents=False) | |
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer() | |
tokenizer.decoder = decoders.BPEDecoder(suffix=token_suffix) | |
tokenizer.post_processor = processors.BertProcessing( | |
sep=(self.original_tokenizer.sep_token, self.original_tokenizer.sep_token_id), | |
cls=(self.original_tokenizer.cls_token, self.original_tokenizer.cls_token_id), | |
) | |
return tokenizer | |
class RobertaConverter(Converter): | |
def converted(self) -> Tokenizer: | |
ot = self.original_tokenizer | |
vocab = ot.encoder | |
merges = list(ot.bpe_ranks.keys()) | |
tokenizer = Tokenizer( | |
BPE( | |
vocab=vocab, | |
merges=merges, | |
dropout=None, | |
continuing_subword_prefix="", | |
end_of_word_suffix="", | |
fuse_unk=False, | |
) | |
) | |
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space) | |
tokenizer.decoder = decoders.ByteLevel() | |
tokenizer.post_processor = processors.RobertaProcessing( | |
sep=(ot.sep_token, ot.sep_token_id), | |
cls=(ot.cls_token, ot.cls_token_id), | |
add_prefix_space=ot.add_prefix_space, | |
trim_offsets=True, # True by default on Roberta (historical) | |
) | |
return tokenizer | |
class RoFormerConverter(Converter): | |
def converted(self) -> Tokenizer: | |
from .models.roformer.tokenization_utils import JiebaPreTokenizer | |
vocab = self.original_tokenizer.vocab | |
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token))) | |
strip_accents = False | |
do_lower_case = False | |
if hasattr(self.original_tokenizer, "basic_tokenizer"): | |
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents | |
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case | |
tokenizer.normalizer = normalizers.BertNormalizer( | |
clean_text=True, | |
handle_chinese_chars=False, | |
strip_accents=strip_accents, | |
lowercase=do_lower_case, | |
) | |
tokenizer.pre_tokenizer = pre_tokenizers.PreTokenizer.custom(JiebaPreTokenizer(vocab)) | |
cls = str(self.original_tokenizer.cls_token) | |
sep = str(self.original_tokenizer.sep_token) | |
cls_token_id = self.original_tokenizer.cls_token_id | |
sep_token_id = self.original_tokenizer.sep_token_id | |
tokenizer.post_processor = processors.TemplateProcessing( | |
single=f"{cls}:0 $A:0 {sep}:0", | |
pair=f"{cls}:0 $A:0 {sep}:0 $B:1 {sep}:1", | |
special_tokens=[ | |
(cls, cls_token_id), | |
(sep, sep_token_id), | |
], | |
) | |
tokenizer.decoder = decoders.WordPiece(prefix="##") | |
return tokenizer | |
class DebertaConverter(Converter): | |
def converted(self) -> Tokenizer: | |
ot = self.original_tokenizer | |
vocab = ot.encoder | |
merges = list(ot.bpe_ranks.keys()) | |
tokenizer = Tokenizer( | |
BPE( | |
vocab=vocab, | |
merges=merges, | |
dropout=None, | |
continuing_subword_prefix="", | |
end_of_word_suffix="", | |
fuse_unk=False, | |
) | |
) | |
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space) | |
tokenizer.decoder = decoders.ByteLevel() | |
tokenizer.post_processor = processors.TemplateProcessing( | |
single="[CLS]:0 $A:0 [SEP]:0", | |
pair="[CLS]:0 $A:0 [SEP]:0 $B:0 [SEP]:0", | |
special_tokens=[ | |
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")), | |
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")), | |
], | |
) | |
return tokenizer | |
class SpmConverter(Converter): | |
def __init__(self, *args): | |
requires_backends(self, "protobuf") | |
super().__init__(*args) | |
from .utils import sentencepiece_model_pb2 as model_pb2 | |
m = model_pb2.ModelProto() | |
with open(self.original_tokenizer.vocab_file, "rb") as f: | |
m.ParseFromString(f.read()) | |
self.proto = m | |
def vocab(self, proto): | |
return [(piece.piece, piece.score) for piece in proto.pieces] | |
def unk_id(self, proto): | |
return proto.trainer_spec.unk_id | |
def tokenizer(self, proto): | |
model_type = proto.trainer_spec.model_type | |
vocab = self.vocab(proto) | |
unk_id = self.unk_id(proto) | |
if model_type == 1: | |
tokenizer = Tokenizer(Unigram(vocab, unk_id)) | |
elif model_type == 2: | |
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract() | |
bpe_vocab = {word: i for i, (word, score) in enumerate(vocab)} | |
tokenizer = Tokenizer( | |
BPE( | |
bpe_vocab, | |
merges, | |
unk_token=proto.trainer_spec.unk_piece, | |
fuse_unk=True, | |
) | |
) | |
else: | |
raise Exception( | |
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm" | |
) | |
return tokenizer | |
def normalizer(self, proto): | |
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap | |
if not precompiled_charsmap: | |
return normalizers.Sequence([normalizers.Replace(Regex(" {2,}"), " ")]) | |
else: | |
return normalizers.Sequence( | |
[normalizers.Precompiled(precompiled_charsmap), normalizers.Replace(Regex(" {2,}"), " ")] | |
) | |
def pre_tokenizer(self, replacement, add_prefix_space): | |
return pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space) | |
def post_processor(self): | |
return None | |
def converted(self) -> Tokenizer: | |
tokenizer = self.tokenizer(self.proto) | |
# Tokenizer assemble | |
tokenizer.normalizer = self.normalizer(self.proto) | |
replacement = "▁" | |
add_prefix_space = True | |
tokenizer.pre_tokenizer = self.pre_tokenizer(replacement, add_prefix_space) | |
tokenizer.decoder = decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space) | |
post_processor = self.post_processor() | |
if post_processor: | |
tokenizer.post_processor = post_processor | |
return tokenizer | |
class AlbertConverter(SpmConverter): | |
def vocab(self, proto): | |
return [ | |
(piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100) | |
for piece in proto.pieces | |
] | |
def normalizer(self, proto): | |
list_normalizers = [ | |
normalizers.Replace("``", '"'), | |
normalizers.Replace("''", '"'), | |
] | |
if not self.original_tokenizer.keep_accents: | |
list_normalizers.append(normalizers.NFKD()) | |
list_normalizers.append(normalizers.StripAccents()) | |
if self.original_tokenizer.do_lower_case: | |
list_normalizers.append(normalizers.Lowercase()) | |
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap | |
list_normalizers.append(normalizers.Precompiled(precompiled_charsmap)) | |
list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " ")) | |
return normalizers.Sequence(list_normalizers) | |
def post_processor(self): | |
return processors.TemplateProcessing( | |
single="[CLS]:0 $A:0 [SEP]:0", | |
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1", | |
special_tokens=[ | |
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")), | |
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")), | |
], | |
) | |
class BarthezConverter(SpmConverter): | |
def unk_id(self, proto): | |
unk_id = 3 | |
return unk_id | |
def post_processor(self): | |
return processors.TemplateProcessing( | |
single="<s> $A </s>", | |
pair="<s> $A </s> </s> $B </s>", | |
special_tokens=[ | |
("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")), | |
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")), | |
], | |
) | |
class CamembertConverter(SpmConverter): | |
def vocab(self, proto): | |
vocab = [ | |
("<s>NOTUSED", 0.0), | |
("<pad>", 0.0), | |
("</s>NOTUSED", 0.0), | |
("<unk>", 0.0), | |
("<unk>NOTUSED", -100), | |
] | |
# We down-grade the original SentencePiece by -100 to avoid using it and use our added token instead | |
vocab += [(piece.piece, piece.score) for piece in proto.pieces[1:]] | |
vocab += [("<mask>", 0.0)] | |
return vocab | |
def unk_id(self, proto): | |
# See vocab unk position | |
return 3 | |
def post_processor(self): | |
return processors.TemplateProcessing( | |
single="<s> $A </s>", | |
pair="<s> $A </s> </s> $B </s>", | |
special_tokens=[ | |
("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")), | |
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")), | |
], | |
) | |
class MBartConverter(SpmConverter): | |
def vocab(self, proto): | |
vocab = [ | |
("<s>", 0.0), | |
("<pad>", 0.0), | |
("</s>", 0.0), | |
("<unk>", 0.0), | |
] | |
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]] | |
vocab += [ | |
("ar_AR", 0.0), | |
("cs_CZ", 0.0), | |
("de_DE", 0.0), | |
("en_XX", 0.0), | |
("es_XX", 0.0), | |
("et_EE", 0.0), | |
("fi_FI", 0.0), | |
("fr_XX", 0.0), | |
("gu_IN", 0.0), | |
("hi_IN", 0.0), | |
("it_IT", 0.0), | |
("ja_XX", 0.0), | |
("kk_KZ", 0.0), | |
("ko_KR", 0.0), | |
("lt_LT", 0.0), | |
("lv_LV", 0.0), | |
("my_MM", 0.0), | |
("ne_NP", 0.0), | |
("nl_XX", 0.0), | |
("ro_RO", 0.0), | |
("ru_RU", 0.0), | |
("si_LK", 0.0), | |
("tr_TR", 0.0), | |
("vi_VN", 0.0), | |
("zh_CN", 0.0), | |
] | |
vocab += [("<mask>", 0.0)] | |
return vocab | |
def unk_id(self, proto): | |
return 3 | |
def post_processor(self): | |
return processors.TemplateProcessing( | |
single="$A </s> en_XX", | |
pair="$A $B </s> en_XX", | |
special_tokens=[ | |
("en_XX", self.original_tokenizer.convert_tokens_to_ids("en_XX")), | |
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")), | |
], | |
) | |
class MBart50Converter(SpmConverter): | |
def vocab(self, proto): | |
vocab = [ | |
("<s>", 0.0), | |
("<pad>", 0.0), | |
("</s>", 0.0), | |
("<unk>", 0.0), | |
] | |
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]] | |
# fmt: off | |
vocab += [("ar_AR", 0.0), ("cs_CZ", 0.0), ("de_DE", 0.0), ("en_XX", 0.0), ("es_XX", 0.0), ("et_EE", 0.0), ("fi_FI", 0.0), ("fr_XX", 0.0), ("gu_IN", 0.0), ("hi_IN", 0.0), ("it_IT", 0.0), ("ja_XX", 0.0), ("kk_KZ", 0.0), ("ko_KR", 0.0), ("lt_LT", 0.0), ("lv_LV", 0.0), ("my_MM", 0.0), ("ne_NP", 0.0), ("nl_XX", 0.0), ("ro_RO", 0.0), ("ru_RU", 0.0), ("si_LK", 0.0), ("tr_TR", 0.0), ("vi_VN", 0.0), ("zh_CN", 0.0), ("af_ZA", 0.0), ("az_AZ", 0.0), ("bn_IN", 0.0), ("fa_IR", 0.0), ("he_IL", 0.0), ("hr_HR", 0.0), ("id_ID", 0.0), ("ka_GE", 0.0), ("km_KH", 0.0), ("mk_MK", 0.0), ("ml_IN", 0.0), ("mn_MN", 0.0), ("mr_IN", 0.0), ("pl_PL", 0.0), ("ps_AF", 0.0), ("pt_XX", 0.0), ("sv_SE", 0.0), ("sw_KE", 0.0), ("ta_IN", 0.0), ("te_IN", 0.0), ("th_TH", 0.0), ("tl_XX", 0.0), ("uk_UA", 0.0), ("ur_PK", 0.0), ("xh_ZA", 0.0), ("gl_ES", 0.0), ("sl_SI", 0.0)] | |
# fmt: on | |
vocab += [("<mask>", 0.0)] | |
return vocab | |
def unk_id(self, proto): | |
return 3 | |
def post_processor(self): | |
return processors.TemplateProcessing( | |
single="en_XX $A </s>", | |
pair="en_XX $A $B </s>", | |
special_tokens=[ | |
("en_XX", self.original_tokenizer.convert_tokens_to_ids("en_XX")), | |
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")), | |
], | |
) | |
class XLMRobertaConverter(SpmConverter): | |
def vocab(self, proto): | |
vocab = [ | |
("<s>", 0.0), | |
("<pad>", 0.0), | |
("</s>", 0.0), | |
("<unk>", 0.0), | |
] | |
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]] | |
vocab += [("<mask>", 0.0)] | |
return vocab | |
def unk_id(self, proto): | |
unk_id = 3 | |
return unk_id | |
def post_processor(self): | |
return processors.TemplateProcessing( | |
single="<s> $A </s>", | |
pair="<s> $A </s> </s> $B </s>", | |
special_tokens=[ | |
("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")), | |
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")), | |
], | |
) | |
class XLNetConverter(SpmConverter): | |
def vocab(self, proto): | |
return [ | |
(piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100) | |
for piece in proto.pieces | |
] | |
def normalizer(self, proto): | |
list_normalizers = [ | |
normalizers.Replace("``", '"'), | |
normalizers.Replace("''", '"'), | |
] | |
if not self.original_tokenizer.keep_accents: | |
list_normalizers.append(normalizers.NFKD()) | |
list_normalizers.append(normalizers.StripAccents()) | |
if self.original_tokenizer.do_lower_case: | |
list_normalizers.append(normalizers.Lowercase()) | |
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap | |
list_normalizers.append(normalizers.Precompiled(precompiled_charsmap)) | |
list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " ")) | |
return normalizers.Sequence(list_normalizers) | |
def post_processor(self): | |
return processors.TemplateProcessing( | |
single="$A:0 <sep>:0 <cls>:2", | |
pair="$A:0 <sep>:0 $B:1 <sep>:1 <cls>:2", | |
special_tokens=[ | |
("<sep>", self.original_tokenizer.convert_tokens_to_ids("<sep>")), | |
("<cls>", self.original_tokenizer.convert_tokens_to_ids("<cls>")), | |
], | |
) | |
class ReformerConverter(SpmConverter): | |
pass | |
class BertGenerationConverter(SpmConverter): | |
pass | |
class PegasusConverter(SpmConverter): | |
def vocab(self, proto): | |
vocab = [ | |
(self.original_tokenizer.pad_token, 0.0), | |
(self.original_tokenizer.eos_token, 0.0), | |
] | |
if self.original_tokenizer.mask_token_sent is not None: | |
vocab += [(self.original_tokenizer.mask_token_sent, 0.0)] | |
if ( | |
self.original_tokenizer.mask_token is not None | |
and self.original_tokenizer.mask_token_id < self.original_tokenizer.offset | |
): | |
vocab += [(self.original_tokenizer.mask_token, 0.0)] | |
vocab += [(f"<unk_{i}>", -100.0) for i in range(2, self.original_tokenizer.offset)] | |
vocab += [(piece.piece, piece.score) for piece in proto.pieces[2:]] | |
return vocab | |
def unk_id(self, proto): | |
return proto.trainer_spec.unk_id + self.original_tokenizer.offset | |
def pre_tokenizer(self, replacement, add_prefix_space): | |
return pre_tokenizers.Sequence( | |
[ | |
pre_tokenizers.WhitespaceSplit(), | |
pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space), | |
] | |
) | |
def post_processor(self): | |
eos = self.original_tokenizer.eos_token | |
special_tokens = [ | |
(eos, self.original_tokenizer.eos_token_id), | |
] | |
return processors.TemplateProcessing(single=["$A", eos], pair=["$A", "$B", eos], special_tokens=special_tokens) | |
class T5Converter(SpmConverter): | |
def vocab(self, proto): | |
num_extra_ids = self.original_tokenizer._extra_ids | |
vocab = [(piece.piece, piece.score) for piece in proto.pieces] | |
vocab += [(f"<extra_id_{i}>", 0.0) for i in range(num_extra_ids - 1, -1, -1)] | |
return vocab | |
def post_processor(self): | |
return processors.TemplateProcessing( | |
single=["$A", "</s>"], | |
pair=["$A", "</s>", "$B", "</s>"], | |
special_tokens=[ | |
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")), | |
], | |
) | |
class BigBirdConverter(SpmConverter): | |
def post_processor(self): | |
return processors.TemplateProcessing( | |
single="[CLS]:0 $A:0 [SEP]:0", | |
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1", | |
special_tokens=[ | |
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")), | |
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")), | |
], | |
) | |
class CLIPConverter(Converter): | |
def converted(self) -> Tokenizer: | |
vocab = self.original_tokenizer.encoder | |
merges = list(self.original_tokenizer.bpe_ranks.keys()) | |
tokenizer = Tokenizer( | |
BPE( | |
vocab=vocab, | |
merges=merges, | |
dropout=None, | |
continuing_subword_prefix="", | |
end_of_word_suffix="</w>", | |
fuse_unk=False, | |
) | |
) | |
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=self.original_tokenizer.add_prefix_space) | |
tokenizer.decoder = decoders.ByteLevel() | |
tokenizer.post_processor = processors.ByteLevel(trim_offsets=False) | |
return tokenizer | |
SLOW_TO_FAST_CONVERTERS = { | |
"AlbertTokenizer": AlbertConverter, | |
"BartTokenizer": RobertaConverter, | |
"BarthezTokenizer": BarthezConverter, | |
"BertTokenizer": BertConverter, | |
"BigBirdTokenizer": BigBirdConverter, | |
"CamembertTokenizer": CamembertConverter, | |
"CLIPTokenizer": CLIPConverter, | |
"ConvBertTokenizer": BertConverter, | |
"DebertaTokenizer": DebertaConverter, | |
"DistilBertTokenizer": BertConverter, | |
"DPRReaderTokenizer": BertConverter, | |
"DPRQuestionEncoderTokenizer": BertConverter, | |
"DPRContextEncoderTokenizer": BertConverter, | |
"ElectraTokenizer": BertConverter, | |
"FunnelTokenizer": FunnelConverter, | |
"GPT2Tokenizer": GPT2Converter, | |
"HerbertTokenizer": HerbertConverter, | |
"LayoutLMTokenizer": BertConverter, | |
"LongformerTokenizer": RobertaConverter, | |
"LEDTokenizer": RobertaConverter, | |
"LxmertTokenizer": BertConverter, | |
"MBartTokenizer": MBartConverter, | |
"MBart50Tokenizer": MBart50Converter, | |
"MPNetTokenizer": MPNetConverter, | |
"MobileBertTokenizer": BertConverter, | |
"OpenAIGPTTokenizer": OpenAIGPTConverter, | |
"PegasusTokenizer": PegasusConverter, | |
"ReformerTokenizer": ReformerConverter, | |
"RetriBertTokenizer": BertConverter, | |
"RobertaTokenizer": RobertaConverter, | |
"RoFormerTokenizer": RoFormerConverter, | |
"SqueezeBertTokenizer": BertConverter, | |
"T5Tokenizer": T5Converter, | |
"XLMRobertaTokenizer": XLMRobertaConverter, | |
"XLNetTokenizer": XLNetConverter, | |
} | |
def convert_slow_tokenizer(transformer_tokenizer) -> Tokenizer: | |
""" | |
Utilities to convert a slow tokenizer instance in a fast tokenizer instance. | |
Args: | |
transformer_tokenizer (:class:`~transformers.tokenization_utils_base.PreTrainedTokenizer`): | |
Instance of a slow tokenizer to convert in the backend tokenizer for | |
:class:`~transformers.tokenization_utils_base.PreTrainedTokenizerFast`. | |
Return: | |
A instance of :class:`~tokenizers.Tokenizer` to be used as the backend tokenizer of a | |
:class:`~transformers.tokenization_utils_base.PreTrainedTokenizerFast` | |
""" | |
tokenizer_class_name = transformer_tokenizer.__class__.__name__ | |
if tokenizer_class_name not in SLOW_TO_FAST_CONVERTERS: | |
raise ValueError( | |
f"An instance of tokenizer class {tokenizer_class_name} cannot be converted in a Fast tokenizer instance. " | |
f"No converter was found. Currently available slow->fast convertors: {list(SLOW_TO_FAST_CONVERTERS.keys())}" | |
) | |
converter_class = SLOW_TO_FAST_CONVERTERS[tokenizer_class_name] | |
return converter_class(transformer_tokenizer).converted() | |