Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Configuration base class and utilities.""" | |
import copy | |
import json | |
import os | |
from typing import Any, Dict, Tuple, Union | |
from . import __version__ | |
from .file_utils import ( | |
CONFIG_NAME, | |
PushToHubMixin, | |
cached_path, | |
copy_func, | |
hf_bucket_url, | |
is_offline_mode, | |
is_remote_url, | |
) | |
from .utils import logging | |
logger = logging.get_logger(__name__) | |
class PretrainedConfig(PushToHubMixin): | |
r""" | |
Base class for all configuration classes. Handles a few parameters common to all models' configurations as well as | |
methods for loading/downloading/saving configurations. | |
Note: | |
A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to | |
initialize a model does **not** load the model weights. It only affects the model's configuration. | |
Class attributes (overridden by derived classes) | |
- **model_type** (:obj:`str`) -- An identifier for the model type, serialized into the JSON file, and used to | |
recreate the correct object in :class:`~transformers.AutoConfig`. | |
- **is_composition** (:obj:`bool`) -- Whether the config class is composed of multiple sub-configs. In this | |
case the config has to be initialized from two or more configs of type | |
:class:`~transformers.PretrainedConfig` like: :class:`~transformers.EncoderDecoderConfig` or | |
:class:`~RagConfig`. | |
- **keys_to_ignore_at_inference** (:obj:`List[str]`) -- A list of keys to ignore by default when looking at | |
dictionary outputs of the model during inference. | |
Common attributes (present in all subclasses) | |
- **vocab_size** (:obj:`int`) -- The number of tokens in the vocabulary, which is also the first dimension of | |
the embeddings matrix (this attribute may be missing for models that don't have a text modality like ViT). | |
- **hidden_size** (:obj:`int`) -- The hidden size of the model. | |
- **num_attention_heads** (:obj:`int`) -- The number of attention heads used in the multi-head attention layers | |
of the model. | |
- **num_hidden_layers** (:obj:`int`) -- The number of blocks in the model. | |
Args: | |
name_or_path (:obj:`str`, `optional`, defaults to :obj:`""`): | |
Store the string that was passed to :func:`~transformers.PreTrainedModel.from_pretrained` or | |
:func:`~transformers.TFPreTrainedModel.from_pretrained` as ``pretrained_model_name_or_path`` if the | |
configuration was created with such a method. | |
output_hidden_states (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not the model should return all hidden-states. | |
output_attentions (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not the model should returns all attentions. | |
return_dict (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
Whether or not the model should return a :class:`~transformers.file_utils.ModelOutput` instead of a plain | |
tuple. | |
is_encoder_decoder (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether the model is used as an encoder/decoder or not. | |
is_decoder (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether the model is used as decoder or not (in which case it's used as an encoder). | |
add_cross_attention (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether cross-attention layers should be added to the model. Note, this option is only relevant for models | |
that can be used as decoder models within the `:class:~transformers.EncoderDecoderModel` class, which | |
consists of all models in ``AUTO_MODELS_FOR_CAUSAL_LM``. | |
tie_encoder_decoder (:obj:`bool`, `optional`, defaults to :obj:`False`) | |
Whether all encoder weights should be tied to their equivalent decoder weights. This requires the encoder | |
and decoder model to have the exact same parameter names. | |
prune_heads (:obj:`Dict[int, List[int]]`, `optional`, defaults to :obj:`{}`): | |
Pruned heads of the model. The keys are the selected layer indices and the associated values, the list of | |
heads to prune in said layer. | |
For instance ``{1: [0, 2], 2: [2, 3]}`` will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2. | |
chunk_size_feed_forward (:obj:`int`, `optional`, defaults to :obj:`0`): | |
The chunk size of all feed forward layers in the residual attention blocks. A chunk size of :obj:`0` means | |
that the feed forward layer is not chunked. A chunk size of n means that the feed forward layer processes | |
:obj:`n` < sequence_length embeddings at a time. For more information on feed forward chunking, see `How | |
does Feed Forward Chunking work? <../glossary.html#feed-forward-chunking>`__ . | |
Parameters for sequence generation | |
- **max_length** (:obj:`int`, `optional`, defaults to 20) -- Maximum length that will be used by default in the | |
:obj:`generate` method of the model. | |
- **min_length** (:obj:`int`, `optional`, defaults to 10) -- Minimum length that will be used by default in the | |
:obj:`generate` method of the model. | |
- **do_sample** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Flag that will be used by default in the | |
:obj:`generate` method of the model. Whether or not to use sampling ; use greedy decoding otherwise. | |
- **early_stopping** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Flag that will be used by default | |
in the :obj:`generate` method of the model. Whether to stop the beam search when at least ``num_beams`` | |
sentences are finished per batch or not. | |
- **num_beams** (:obj:`int`, `optional`, defaults to 1) -- Number of beams for beam search that will be used by | |
default in the :obj:`generate` method of the model. 1 means no beam search. | |
- **num_beam_groups** (:obj:`int`, `optional`, defaults to 1) -- Number of groups to divide :obj:`num_beams` | |
into in order to ensure diversity among different groups of beams that will be used by default in the | |
:obj:`generate` method of the model. 1 means no group beam search. | |
- **diversity_penalty** (:obj:`float`, `optional`, defaults to 0.0) -- Value to control diversity for group | |
beam search. that will be used by default in the :obj:`generate` method of the model. 0 means no diversity | |
penalty. The higher the penalty, the more diverse are the outputs. | |
- **temperature** (:obj:`float`, `optional`, defaults to 1) -- The value used to module the next token | |
probabilities that will be used by default in the :obj:`generate` method of the model. Must be strictly | |
positive. | |
- **top_k** (:obj:`int`, `optional`, defaults to 50) -- Number of highest probability vocabulary tokens to keep | |
for top-k-filtering that will be used by default in the :obj:`generate` method of the model. | |
- **top_p** (:obj:`float`, `optional`, defaults to 1) -- Value that will be used by default in the | |
:obj:`generate` method of the model for ``top_p``. If set to float < 1, only the most probable tokens with | |
probabilities that add up to ``top_p`` or higher are kept for generation. | |
- **repetition_penalty** (:obj:`float`, `optional`, defaults to 1) -- Parameter for repetition penalty that | |
will be used by default in the :obj:`generate` method of the model. 1.0 means no penalty. | |
- **length_penalty** (:obj:`float`, `optional`, defaults to 1) -- Exponential penalty to the length that will | |
be used by default in the :obj:`generate` method of the model. | |
- **no_repeat_ngram_size** (:obj:`int`, `optional`, defaults to 0) -- Value that will be used by default in the | |
:obj:`generate` method of the model for ``no_repeat_ngram_size``. If set to int > 0, all ngrams of that size | |
can only occur once. | |
- **encoder_no_repeat_ngram_size** (:obj:`int`, `optional`, defaults to 0) -- Value that will be used by | |
default in the :obj:`generate` method of the model for ``encoder_no_repeat_ngram_size``. If set to int > 0, | |
all ngrams of that size that occur in the ``encoder_input_ids`` cannot occur in the ``decoder_input_ids``. | |
- **bad_words_ids** (:obj:`List[int]`, `optional`) -- List of token ids that are not allowed to be generated | |
that will be used by default in the :obj:`generate` method of the model. In order to get the tokens of the | |
words that should not appear in the generated text, use :obj:`tokenizer.encode(bad_word, | |
add_prefix_space=True)`. | |
- **num_return_sequences** (:obj:`int`, `optional`, defaults to 1) -- Number of independently computed returned | |
sequences for each element in the batch that will be used by default in the :obj:`generate` method of the | |
model. | |
- **output_scores** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Whether the model should return the | |
logits when used for generation | |
- **return_dict_in_generate** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Whether the model should | |
return a :class:`~transformers.file_utils.ModelOutput` instead of a :obj:`torch.LongTensor` | |
- **forced_bos_token_id** (:obj:`int`, `optional`) -- The id of the token to force as the first generated token | |
after the :obj:`decoder_start_token_id`. Useful for multilingual models like :doc:`mBART | |
<../model_doc/mbart>` where the first generated token needs to be the target language token. | |
- **forced_eos_token_id** (:obj:`int`, `optional`) -- The id of the token to force as the last generated token | |
when :obj:`max_length` is reached. | |
- **remove_invalid_values** (:obj:`bool`, `optional`) -- Whether to remove possible `nan` and `inf` outputs of | |
the model to prevent the generation method to crash. Note that using ``remove_invalid_values`` can slow down | |
generation. | |
Parameters for fine-tuning tasks | |
- **architectures** (:obj:`List[str]`, `optional`) -- Model architectures that can be used with the model | |
pretrained weights. | |
- **finetuning_task** (:obj:`str`, `optional`) -- Name of the task used to fine-tune the model. This can be | |
used when converting from an original (TensorFlow or PyTorch) checkpoint. | |
- **id2label** (:obj:`Dict[int, str]`, `optional`) -- A map from index (for instance prediction index, or | |
target index) to label. | |
- **label2id** (:obj:`Dict[str, int]`, `optional`) -- A map from label to index for the model. | |
- **num_labels** (:obj:`int`, `optional`) -- Number of labels to use in the last layer added to the model, | |
typically for a classification task. | |
- **task_specific_params** (:obj:`Dict[str, Any]`, `optional`) -- Additional keyword arguments to store for the | |
current task. | |
- **problem_type** (:obj:`str`, `optional`) -- Problem type for :obj:`XxxForSequenceClassification` models. Can | |
be one of (:obj:`"regression"`, :obj:`"single_label_classification"`, :obj:`"multi_label_classification"`). | |
Please note that this parameter is only available in the following models: `AlbertForSequenceClassification`, | |
`BertForSequenceClassification`, `BigBirdForSequenceClassification`, `ConvBertForSequenceClassification`, | |
`DistilBertForSequenceClassification`, `ElectraForSequenceClassification`, `FunnelForSequenceClassification`, | |
`LongformerForSequenceClassification`, `MobileBertForSequenceClassification`, | |
`ReformerForSequenceClassification`, `RobertaForSequenceClassification`, | |
`SqueezeBertForSequenceClassification`, `XLMForSequenceClassification` and `XLNetForSequenceClassification`. | |
Parameters linked to the tokenizer | |
- **tokenizer_class** (:obj:`str`, `optional`) -- The name of the associated tokenizer class to use (if none is | |
set, will use the tokenizer associated to the model by default). | |
- **prefix** (:obj:`str`, `optional`) -- A specific prompt that should be added at the beginning of each text | |
before calling the model. | |
- **bos_token_id** (:obj:`int`, `optional`)) -- The id of the `beginning-of-stream` token. | |
- **pad_token_id** (:obj:`int`, `optional`)) -- The id of the `padding` token. | |
- **eos_token_id** (:obj:`int`, `optional`)) -- The id of the `end-of-stream` token. | |
- **decoder_start_token_id** (:obj:`int`, `optional`)) -- If an encoder-decoder model starts decoding with a | |
different token than `bos`, the id of that token. | |
- **sep_token_id** (:obj:`int`, `optional`)) -- The id of the `separation` token. | |
PyTorch specific parameters | |
- **torchscript** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Whether or not the model should be | |
used with Torchscript. | |
- **tie_word_embeddings** (:obj:`bool`, `optional`, defaults to :obj:`True`) -- Whether the model's input and | |
output word embeddings should be tied. Note that this is only relevant if the model has a output word | |
embedding layer. | |
- **torch_dtype** (:obj:`str`, `optional`) -- The :obj:`dtype` of the weights. This attribute can be used to | |
initialize the model to a non-default ``dtype`` (which is normally ``float32``) and thus allow for optimal | |
storage allocation. For example, if the saved model is ``float16``, ideally we want to load it back using the | |
minimal amount of memory needed to load ``float16`` weights. Since the config object is stored in plain text, | |
this attribute contains just the floating type string without the ``torch.`` prefix. For example, for | |
``torch.float16`` ``torch_dtype`` is the ``"float16"`` string. | |
TensorFlow specific parameters | |
- **use_bfloat16** (:obj:`bool`, `optional`, defaults to :obj:`False`) -- Whether or not the model should use | |
BFloat16 scalars (only used by some TensorFlow models). | |
""" | |
model_type: str = "" | |
is_composition: bool = False | |
def __init__(self, **kwargs): | |
# Attributes with defaults | |
self.return_dict = kwargs.pop("return_dict", True) | |
self.output_hidden_states = kwargs.pop("output_hidden_states", False) | |
self.output_attentions = kwargs.pop("output_attentions", False) | |
self.torchscript = kwargs.pop("torchscript", False) # Only used by PyTorch models | |
self.torch_dtype = kwargs.pop("torch_dtype", None) # Only used by PyTorch models | |
self.use_bfloat16 = kwargs.pop("use_bfloat16", False) | |
self.pruned_heads = kwargs.pop("pruned_heads", {}) | |
self.tie_word_embeddings = kwargs.pop( | |
"tie_word_embeddings", True | |
) # Whether input and output word embeddings should be tied for all MLM, LM and Seq2Seq models. | |
# Is decoder is used in encoder-decoder models to differentiate encoder from decoder | |
self.is_encoder_decoder = kwargs.pop("is_encoder_decoder", False) | |
self.is_decoder = kwargs.pop("is_decoder", False) | |
self.add_cross_attention = kwargs.pop("add_cross_attention", False) | |
self.tie_encoder_decoder = kwargs.pop("tie_encoder_decoder", False) | |
# Parameters for sequence generation | |
self.max_length = kwargs.pop("max_length", 20) | |
self.min_length = kwargs.pop("min_length", 0) | |
self.do_sample = kwargs.pop("do_sample", False) | |
self.early_stopping = kwargs.pop("early_stopping", False) | |
self.num_beams = kwargs.pop("num_beams", 1) | |
self.num_beam_groups = kwargs.pop("num_beam_groups", 1) | |
self.diversity_penalty = kwargs.pop("diversity_penalty", 0.0) | |
self.temperature = kwargs.pop("temperature", 1.0) | |
self.top_k = kwargs.pop("top_k", 50) | |
self.top_p = kwargs.pop("top_p", 1.0) | |
self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0) | |
self.length_penalty = kwargs.pop("length_penalty", 1.0) | |
self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0) | |
self.encoder_no_repeat_ngram_size = kwargs.pop("encoder_no_repeat_ngram_size", 0) | |
self.bad_words_ids = kwargs.pop("bad_words_ids", None) | |
self.num_return_sequences = kwargs.pop("num_return_sequences", 1) | |
self.chunk_size_feed_forward = kwargs.pop("chunk_size_feed_forward", 0) | |
self.output_scores = kwargs.pop("output_scores", False) | |
self.return_dict_in_generate = kwargs.pop("return_dict_in_generate", False) | |
self.forced_bos_token_id = kwargs.pop("forced_bos_token_id", None) | |
self.forced_eos_token_id = kwargs.pop("forced_eos_token_id", None) | |
self.remove_invalid_values = kwargs.pop("remove_invalid_values", False) | |
# Fine-tuning task arguments | |
self.architectures = kwargs.pop("architectures", None) | |
self.finetuning_task = kwargs.pop("finetuning_task", None) | |
self.id2label = kwargs.pop("id2label", None) | |
self.label2id = kwargs.pop("label2id", None) | |
if self.id2label is not None: | |
kwargs.pop("num_labels", None) | |
self.id2label = dict((int(key), value) for key, value in self.id2label.items()) | |
# Keys are always strings in JSON so convert ids to int here. | |
else: | |
self.num_labels = kwargs.pop("num_labels", 2) | |
# Tokenizer arguments TODO: eventually tokenizer and models should share the same config | |
self.tokenizer_class = kwargs.pop("tokenizer_class", None) | |
self.prefix = kwargs.pop("prefix", None) | |
self.bos_token_id = kwargs.pop("bos_token_id", None) | |
self.pad_token_id = kwargs.pop("pad_token_id", None) | |
self.eos_token_id = kwargs.pop("eos_token_id", None) | |
self.sep_token_id = kwargs.pop("sep_token_id", None) | |
self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None) | |
# task specific arguments | |
self.task_specific_params = kwargs.pop("task_specific_params", None) | |
# regression / multi-label classification | |
self.problem_type = kwargs.pop("problem_type", None) | |
allowed_problem_types = ("regression", "single_label_classification", "multi_label_classification") | |
if self.problem_type is not None and self.problem_type not in allowed_problem_types: | |
raise ValueError( | |
f"The config parameter `problem_type` wasnot understood: received {self.problem_type}" | |
"but only 'regression', 'single_label_classification' and 'multi_label_classification' are valid." | |
) | |
# TPU arguments | |
if kwargs.pop("xla_device", None) is not None: | |
logger.warning( | |
"The `xla_device` argument has been deprecated in v4.4.0 of Transformers. It is ignored and you can " | |
"safely remove it from your `config.json` file." | |
) | |
# Name or path to the pretrained checkpoint | |
self._name_or_path = str(kwargs.pop("name_or_path", "")) | |
# Drop the transformers version info | |
self.transformers_version = kwargs.pop("transformers_version", None) | |
# Additional attributes without default values | |
for key, value in kwargs.items(): | |
try: | |
setattr(self, key, value) | |
except AttributeError as err: | |
logger.error(f"Can't set {key} with value {value} for {self}") | |
raise err | |
def name_or_path(self) -> str: | |
return self._name_or_path | |
def name_or_path(self, value): | |
self._name_or_path = str(value) # Make sure that name_or_path is a string (for JSON encoding) | |
def use_return_dict(self) -> bool: | |
""" | |
:obj:`bool`: Whether or not return :class:`~transformers.file_utils.ModelOutput` instead of tuples. | |
""" | |
# If torchscript is set, force `return_dict=False` to avoid jit errors | |
return self.return_dict and not self.torchscript | |
def num_labels(self) -> int: | |
""" | |
:obj:`int`: The number of labels for classification models. | |
""" | |
return len(self.id2label) | |
def num_labels(self, num_labels: int): | |
if self.id2label is None or len(self.id2label) != num_labels: | |
self.id2label = {i: f"LABEL_{i}" for i in range(num_labels)} | |
self.label2id = dict(zip(self.id2label.values(), self.id2label.keys())) | |
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): | |
""" | |
Save a configuration object to the directory ``save_directory``, so that it can be re-loaded using the | |
:func:`~transformers.PretrainedConfig.from_pretrained` class method. | |
Args: | |
save_directory (:obj:`str` or :obj:`os.PathLike`): | |
Directory where the configuration JSON file will be saved (will be created if it does not exist). | |
push_to_hub (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not to push your model to the Hugging Face model hub after saving it. | |
.. warning:: | |
Using :obj:`push_to_hub=True` will synchronize the repository you are pushing to with | |
:obj:`save_directory`, which requires :obj:`save_directory` to be a local clone of the repo you are | |
pushing to if it's an existing folder. Pass along :obj:`temp_dir=True` to use a temporary directory | |
instead. | |
kwargs: | |
Additional key word arguments passed along to the | |
:meth:`~transformers.file_utils.PushToHubMixin.push_to_hub` method. | |
""" | |
if os.path.isfile(save_directory): | |
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") | |
if push_to_hub: | |
commit_message = kwargs.pop("commit_message", None) | |
repo = self._create_or_get_repo(save_directory, **kwargs) | |
os.makedirs(save_directory, exist_ok=True) | |
# If we save using the predefined names, we can load using `from_pretrained` | |
output_config_file = os.path.join(save_directory, CONFIG_NAME) | |
self.to_json_file(output_config_file, use_diff=True) | |
logger.info(f"Configuration saved in {output_config_file}") | |
if push_to_hub: | |
url = self._push_to_hub(repo, commit_message=commit_message) | |
logger.info(f"Configuration pushed to the hub in this commit: {url}") | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
r""" | |
Instantiate a :class:`~transformers.PretrainedConfig` (or a derived class) from a pretrained model | |
configuration. | |
Args: | |
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`): | |
This can be either: | |
- a string, the `model id` of a pretrained model configuration hosted inside a model repo on | |
huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or | |
namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``. | |
- a path to a `directory` containing a configuration file saved using the | |
:func:`~transformers.PretrainedConfig.save_pretrained` method, e.g., ``./my_model_directory/``. | |
- a path or url to a saved configuration JSON `file`, e.g., | |
``./my_model_directory/configuration.json``. | |
cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`): | |
Path to a directory in which a downloaded pretrained model configuration should be cached if the | |
standard cache should not be used. | |
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not to force to (re-)download the configuration files and override the cached versions if | |
they exist. | |
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
Whether or not to delete incompletely received file. Attempts to resume the download if such a file | |
exists. | |
proxies (:obj:`Dict[str, str]`, `optional`): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |
use_auth_token (:obj:`str` or `bool`, `optional`): | |
The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token | |
generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`). | |
revision(:obj:`str`, `optional`, defaults to :obj:`"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any | |
identifier allowed by git. | |
return_unused_kwargs (:obj:`bool`, `optional`, defaults to :obj:`False`): | |
If :obj:`False`, then this function returns just the final configuration object. | |
If :obj:`True`, then this functions returns a :obj:`Tuple(config, unused_kwargs)` where `unused_kwargs` | |
is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., | |
the part of ``kwargs`` which has not been used to update ``config`` and is otherwise ignored. | |
kwargs (:obj:`Dict[str, Any]`, `optional`): | |
The values in kwargs of any keys which are configuration attributes will be used to override the loaded | |
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled | |
by the ``return_unused_kwargs`` keyword parameter. | |
.. note:: | |
Passing :obj:`use_auth_token=True` is required when you want to use a private model. | |
Returns: | |
:class:`PretrainedConfig`: The configuration object instantiated from this pretrained model. | |
Examples:: | |
# We can't instantiate directly the base class `PretrainedConfig` so let's show the examples on a | |
# derived class: BertConfig | |
config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from huggingface.co and cache. | |
config = BertConfig.from_pretrained('./test/saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')` | |
config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json') | |
config = BertConfig.from_pretrained('bert-base-uncased', output_attentions=True, foo=False) | |
assert config.output_attentions == True | |
config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attentions=True, | |
foo=False, return_unused_kwargs=True) | |
assert config.output_attentions == True | |
assert unused_kwargs == {'foo': False} | |
""" | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warn( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
def get_config_dict( | |
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs | |
) -> Tuple[Dict[str, Any], Dict[str, Any]]: | |
""" | |
From a ``pretrained_model_name_or_path``, resolve to a dictionary of parameters, to be used for instantiating a | |
:class:`~transformers.PretrainedConfig` using ``from_dict``. | |
Parameters: | |
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`): | |
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. | |
Returns: | |
:obj:`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the configuration object. | |
""" | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
revision = kwargs.pop("revision", None) | |
from_pipeline = kwargs.pop("_from_pipeline", None) | |
from_auto_class = kwargs.pop("_from_auto", False) | |
user_agent = {"file_type": "config", "from_auto_class": from_auto_class} | |
if from_pipeline is not None: | |
user_agent["using_pipeline"] = from_pipeline | |
if is_offline_mode() and not local_files_only: | |
logger.info("Offline mode: forcing local_files_only=True") | |
local_files_only = True | |
pretrained_model_name_or_path = str(pretrained_model_name_or_path) | |
if os.path.isdir(pretrained_model_name_or_path): | |
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME) | |
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): | |
config_file = pretrained_model_name_or_path | |
else: | |
config_file = hf_bucket_url( | |
pretrained_model_name_or_path, filename=CONFIG_NAME, revision=revision, mirror=None | |
) | |
try: | |
# Load from URL or cache if already cached | |
resolved_config_file = cached_path( | |
config_file, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
resume_download=resume_download, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
user_agent=user_agent, | |
) | |
# Load config dict | |
config_dict = cls._dict_from_json_file(resolved_config_file) | |
except EnvironmentError as err: | |
logger.error(err) | |
msg = ( | |
f"Can't load config for '{pretrained_model_name_or_path}'. Make sure that:\n\n" | |
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n" | |
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a {CONFIG_NAME} file\n\n" | |
) | |
raise EnvironmentError(msg) | |
except json.JSONDecodeError: | |
msg = ( | |
f"Couldn't reach server at '{config_file}' to download configuration file or " | |
"configuration file is not a valid JSON file. " | |
f"Please check network or file content here: {resolved_config_file}." | |
) | |
raise EnvironmentError(msg) | |
if resolved_config_file == config_file: | |
logger.info(f"loading configuration file {config_file}") | |
else: | |
logger.info(f"loading configuration file {config_file} from cache at {resolved_config_file}") | |
return config_dict, kwargs | |
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PretrainedConfig": | |
""" | |
Instantiates a :class:`~transformers.PretrainedConfig` from a Python dictionary of parameters. | |
Args: | |
config_dict (:obj:`Dict[str, Any]`): | |
Dictionary that will be used to instantiate the configuration object. Such a dictionary can be | |
retrieved from a pretrained checkpoint by leveraging the | |
:func:`~transformers.PretrainedConfig.get_config_dict` method. | |
kwargs (:obj:`Dict[str, Any]`): | |
Additional parameters from which to initialize the configuration object. | |
Returns: | |
:class:`PretrainedConfig`: The configuration object instantiated from those parameters. | |
""" | |
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) | |
config = cls(**config_dict) | |
if hasattr(config, "pruned_heads"): | |
config.pruned_heads = dict((int(key), value) for key, value in config.pruned_heads.items()) | |
# Update config with kwargs if needed | |
to_remove = [] | |
for key, value in kwargs.items(): | |
if hasattr(config, key): | |
setattr(config, key, value) | |
to_remove.append(key) | |
for key in to_remove: | |
kwargs.pop(key, None) | |
logger.info(f"Model config {config}") | |
if return_unused_kwargs: | |
return config, kwargs | |
else: | |
return config | |
def from_json_file(cls, json_file: Union[str, os.PathLike]) -> "PretrainedConfig": | |
""" | |
Instantiates a :class:`~transformers.PretrainedConfig` from the path to a JSON file of parameters. | |
Args: | |
json_file (:obj:`str` or :obj:`os.PathLike`): | |
Path to the JSON file containing the parameters. | |
Returns: | |
:class:`PretrainedConfig`: The configuration object instantiated from that JSON file. | |
""" | |
config_dict = cls._dict_from_json_file(json_file) | |
return cls(**config_dict) | |
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]): | |
with open(json_file, "r", encoding="utf-8") as reader: | |
text = reader.read() | |
return json.loads(text) | |
def __eq__(self, other): | |
return self.__dict__ == other.__dict__ | |
def __repr__(self): | |
return f"{self.__class__.__name__} {self.to_json_string()}" | |
def to_diff_dict(self) -> Dict[str, Any]: | |
""" | |
Removes all attributes from config which correspond to the default config attributes for better readability and | |
serializes to a Python dictionary. | |
Returns: | |
:obj:`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance, | |
""" | |
config_dict = self.to_dict() | |
# get the default config dict | |
default_config_dict = PretrainedConfig().to_dict() | |
# get class specific config dict | |
class_config_dict = self.__class__().to_dict() if not self.is_composition else {} | |
serializable_config_dict = {} | |
# only serialize values that differ from the default config | |
for key, value in config_dict.items(): | |
if ( | |
key not in default_config_dict | |
or key == "transformers_version" | |
or value != default_config_dict[key] | |
or (key in class_config_dict and value != class_config_dict[key]) | |
): | |
serializable_config_dict[key] = value | |
return serializable_config_dict | |
def to_dict(self) -> Dict[str, Any]: | |
""" | |
Serializes this instance to a Python dictionary. | |
Returns: | |
:obj:`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. | |
""" | |
output = copy.deepcopy(self.__dict__) | |
if hasattr(self.__class__, "model_type"): | |
output["model_type"] = self.__class__.model_type | |
# Transformers version when serializing the model | |
output["transformers_version"] = __version__ | |
return output | |
def to_json_string(self, use_diff: bool = True) -> str: | |
""" | |
Serializes this instance to a JSON string. | |
Args: | |
use_diff (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
If set to ``True``, only the difference between the config instance and the default | |
``PretrainedConfig()`` is serialized to JSON string. | |
Returns: | |
:obj:`str`: String containing all the attributes that make up this configuration instance in JSON format. | |
""" | |
if use_diff is True: | |
config_dict = self.to_diff_dict() | |
else: | |
config_dict = self.to_dict() | |
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n" | |
def to_json_file(self, json_file_path: Union[str, os.PathLike], use_diff: bool = True): | |
""" | |
Save this instance to a JSON file. | |
Args: | |
json_file_path (:obj:`str` or :obj:`os.PathLike`): | |
Path to the JSON file in which this configuration instance's parameters will be saved. | |
use_diff (:obj:`bool`, `optional`, defaults to :obj:`True`): | |
If set to ``True``, only the difference between the config instance and the default | |
``PretrainedConfig()`` is serialized to JSON file. | |
""" | |
with open(json_file_path, "w", encoding="utf-8") as writer: | |
writer.write(self.to_json_string(use_diff=use_diff)) | |
def update(self, config_dict: Dict[str, Any]): | |
""" | |
Updates attributes of this class with attributes from ``config_dict``. | |
Args: | |
config_dict (:obj:`Dict[str, Any]`): Dictionary of attributes that should be updated for this class. | |
""" | |
for key, value in config_dict.items(): | |
setattr(self, key, value) | |
def update_from_string(self, update_str: str): | |
""" | |
Updates attributes of this class with attributes from ``update_str``. | |
The expected format is ints, floats and strings as is, and for booleans use ``true`` or ``false``. For example: | |
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" | |
The keys to change have to already exist in the config object. | |
Args: | |
update_str (:obj:`str`): String with attributes that should be updated for this class. | |
""" | |
d = dict(x.split("=") for x in update_str.split(",")) | |
for k, v in d.items(): | |
if not hasattr(self, k): | |
raise ValueError(f"key {k} isn't in the original config dict") | |
old_v = getattr(self, k) | |
if isinstance(old_v, bool): | |
if v.lower() in ["true", "1", "y", "yes"]: | |
v = True | |
elif v.lower() in ["false", "0", "n", "no"]: | |
v = False | |
else: | |
raise ValueError(f"can't derive true or false from {v} (key {k})") | |
elif isinstance(old_v, int): | |
v = int(v) | |
elif isinstance(old_v, float): | |
v = float(v) | |
elif not isinstance(old_v, str): | |
raise ValueError( | |
f"You can only update int, float, bool or string values in the config, got {v} for key {k}" | |
) | |
setattr(self, k, v) | |
PretrainedConfig.push_to_hub = copy_func(PretrainedConfig.push_to_hub) | |
PretrainedConfig.push_to_hub.__doc__ = PretrainedConfig.push_to_hub.__doc__.format( | |
object="config", object_class="AutoConfig", object_files="configuration file" | |
) | |