File size: 14,037 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import collections

import numpy as np

from ..file_utils import add_end_docstrings, is_torch_available, requires_backends
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, Pipeline, PipelineException


if is_torch_available():
    import torch

    from ..models.auto.modeling_auto import MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING


class TableQuestionAnsweringArgumentHandler(ArgumentHandler):
    """
    Handles arguments for the TableQuestionAnsweringPipeline
    """

    def __call__(self, table=None, query=None, sequential=False, padding=True, truncation=True):
        # Returns tqa_pipeline_inputs of shape:
        # [
        #   {"table": pd.DataFrame, "query": List[str]},
        #   ...,
        #   {"table": pd.DataFrame, "query" : List[str]}
        # ]
        requires_backends(self, "pandas")
        import pandas as pd

        if table is None:
            raise ValueError("Keyword argument `table` cannot be None.")
        elif query is None:
            if isinstance(table, dict) and table.get("query") is not None and table.get("table") is not None:
                tqa_pipeline_inputs = [table]
            elif isinstance(table, list) and len(table) > 0:
                if not all(isinstance(d, dict) for d in table):
                    raise ValueError(
                        f"Keyword argument `table` should be a list of dict, but is {(type(d) for d in table)}"
                    )

                if table[0].get("query") is not None and table[0].get("table") is not None:
                    tqa_pipeline_inputs = table
                else:
                    raise ValueError(
                        f"If keyword argument `table` is a list of dictionaries, each dictionary should have a `table` "
                        f"and `query` key, but only dictionary has keys {table[0].keys()} `table` and `query` keys."
                    )
            else:
                raise ValueError(
                    f"Invalid input. Keyword argument `table` should be either of type `dict` or `list`, but "
                    f"is {type(table)})"
                )
        else:
            tqa_pipeline_inputs = [{"table": table, "query": query}]

        for tqa_pipeline_input in tqa_pipeline_inputs:
            if not isinstance(tqa_pipeline_input["table"], pd.DataFrame):
                if tqa_pipeline_input["table"] is None:
                    raise ValueError("Table cannot be None.")

                tqa_pipeline_input["table"] = pd.DataFrame(tqa_pipeline_input["table"])

        return tqa_pipeline_inputs, sequential, padding, truncation


@add_end_docstrings(PIPELINE_INIT_ARGS)
class TableQuestionAnsweringPipeline(Pipeline):
    """
    Table Question Answering pipeline using a :obj:`ModelForTableQuestionAnswering`. This pipeline is only available in
    PyTorch.

    This tabular question answering pipeline can currently be loaded from :func:`~transformers.pipeline` using the
    following task identifier: :obj:`"table-question-answering"`.

    The models that this pipeline can use are models that have been fine-tuned on a tabular question answering task.
    See the up-to-date list of available models on `huggingface.co/models
    <https://huggingface.co/models?filter=table-question-answering>`__.
    """

    default_input_names = "table,query"

    def __init__(self, args_parser=TableQuestionAnsweringArgumentHandler(), *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._args_parser = args_parser

        if self.framework == "tf":
            raise ValueError("The TableQuestionAnsweringPipeline is only available in PyTorch.")

        self.check_model_type(MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING)

        self.aggregate = bool(getattr(self.model.config, "aggregation_labels")) and bool(
            getattr(self.model.config, "num_aggregation_labels")
        )

    def batch_inference(self, **inputs):
        with torch.no_grad():
            return self.model(**inputs)

    def sequential_inference(self, **inputs):
        """
        Inference used for models that need to process sequences in a sequential fashion, like the SQA models which
        handle conversational query related to a table.
        """
        with torch.no_grad():
            all_logits = []
            all_aggregations = []
            prev_answers = None
            batch_size = inputs["input_ids"].shape[0]

            input_ids = inputs["input_ids"].to(self.device)
            attention_mask = inputs["attention_mask"].to(self.device)
            token_type_ids = inputs["token_type_ids"].to(self.device)
            token_type_ids_example = None

            for index in range(batch_size):
                # If sequences have already been processed, the token type IDs will be created according to the previous
                # answer.
                if prev_answers is not None:
                    prev_labels_example = token_type_ids_example[:, 3]  # shape (seq_len,)
                    model_labels = np.zeros_like(prev_labels_example.cpu().numpy())  # shape (seq_len,)

                    token_type_ids_example = token_type_ids[index]  # shape (seq_len, 7)
                    for i in range(model_labels.shape[0]):
                        segment_id = token_type_ids_example[:, 0].tolist()[i]
                        col_id = token_type_ids_example[:, 1].tolist()[i] - 1
                        row_id = token_type_ids_example[:, 2].tolist()[i] - 1

                        if row_id >= 0 and col_id >= 0 and segment_id == 1:
                            model_labels[i] = int(prev_answers[(col_id, row_id)])

                    token_type_ids_example[:, 3] = torch.from_numpy(model_labels).type(torch.long).to(self.device)

                input_ids_example = input_ids[index]
                attention_mask_example = attention_mask[index]  # shape (seq_len,)
                token_type_ids_example = token_type_ids[index]  # shape (seq_len, 7)
                outputs = self.model(
                    input_ids=input_ids_example.unsqueeze(0),
                    attention_mask=attention_mask_example.unsqueeze(0),
                    token_type_ids=token_type_ids_example.unsqueeze(0),
                )
                logits = outputs.logits

                if self.aggregate:
                    all_aggregations.append(outputs.logits_aggregation)

                all_logits.append(logits)

                dist_per_token = torch.distributions.Bernoulli(logits=logits)
                probabilities = dist_per_token.probs * attention_mask_example.type(torch.float32).to(
                    dist_per_token.probs.device
                )

                coords_to_probs = collections.defaultdict(list)
                for i, p in enumerate(probabilities.squeeze().tolist()):
                    segment_id = token_type_ids_example[:, 0].tolist()[i]
                    col = token_type_ids_example[:, 1].tolist()[i] - 1
                    row = token_type_ids_example[:, 2].tolist()[i] - 1
                    if col >= 0 and row >= 0 and segment_id == 1:
                        coords_to_probs[(col, row)].append(p)

                prev_answers = {key: np.array(coords_to_probs[key]).mean() > 0.5 for key in coords_to_probs}

            logits_batch = torch.cat(tuple(all_logits), 0)

            return (logits_batch,) if not self.aggregate else (logits_batch, torch.cat(tuple(all_aggregations), 0))

    def __call__(self, *args, **kwargs):
        r"""
        Answers queries according to a table. The pipeline accepts several types of inputs which are detailed below:

        - ``pipeline(table, query)``
        - ``pipeline(table, [query])``
        - ``pipeline(table=table, query=query)``
        - ``pipeline(table=table, query=[query])``
        - ``pipeline({"table": table, "query": query})``
        - ``pipeline({"table": table, "query": [query]})``
        - ``pipeline([{"table": table, "query": query}, {"table": table, "query": query}])``

        The :obj:`table` argument should be a dict or a DataFrame built from that dict, containing the whole table:

        Example::

            data = {
                "actors": ["brad pitt", "leonardo di caprio", "george clooney"],
                "age": ["56", "45", "59"],
                "number of movies": ["87", "53", "69"],
                "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
            }

        This dictionary can be passed in as such, or can be converted to a pandas DataFrame:

        Example::

            import pandas as pd
            table = pd.DataFrame.from_dict(data)


        Args:
            table (:obj:`pd.DataFrame` or :obj:`Dict`):
                Pandas DataFrame or dictionary that will be converted to a DataFrame containing all the table values.
                See above for an example of dictionary.
            query (:obj:`str` or :obj:`List[str]`):
                Query or list of queries that will be sent to the model alongside the table.
            sequential (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether to do inference sequentially or as a batch. Batching is faster, but models like SQA require the
                inference to be done sequentially to extract relations within sequences, given their conversational
                nature.
            padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`False`):
                Activates and controls padding. Accepts the following values:

                * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a
                  single sequence if provided).
                * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
                  maximum acceptable input length for the model if that argument is not provided.
                * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
                  different lengths).

            truncation (:obj:`bool`, :obj:`str` or :class:`~transformers.TapasTruncationStrategy`, `optional`, defaults to :obj:`False`):
                Activates and controls truncation. Accepts the following values:

                * :obj:`True` or :obj:`'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument
                  :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not
                  provided. This will truncate row by row, removing rows from the table.
                * :obj:`False` or :obj:`'do_not_truncate'` (default): No truncation (i.e., can output batch with
                  sequence lengths greater than the model maximum admissible input size).


        Return:
            A dictionary or a list of dictionaries containing results: Each result is a dictionary with the following
            keys:

            - **answer** (:obj:`str`) -- The answer of the query given the table. If there is an aggregator, the answer
              will be preceded by :obj:`AGGREGATOR >`.
            - **coordinates** (:obj:`List[Tuple[int, int]]`) -- Coordinates of the cells of the answers.
            - **cells** (:obj:`List[str]`) -- List of strings made up of the answer cell values.
            - **aggregator** (:obj:`str`) -- If the model has an aggregator, this returns the aggregator.
        """
        pipeline_inputs, sequential, padding, truncation = self._args_parser(*args, **kwargs)
        batched_answers = []
        for pipeline_input in pipeline_inputs:
            table, query = pipeline_input["table"], pipeline_input["query"]
            if table.empty:
                raise ValueError("table is empty")
            if not query:
                raise ValueError("query is empty")
            inputs = self.tokenizer(
                table, query, return_tensors=self.framework, truncation="drop_rows_to_fit", padding=padding
            )

            outputs = self.sequential_inference(**inputs) if sequential else self.batch_inference(**inputs)

            if self.aggregate:
                logits, logits_agg = outputs[:2]
                predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits.detach(), logits_agg)
                answer_coordinates_batch, agg_predictions = predictions
                aggregators = {i: self.model.config.aggregation_labels[pred] for i, pred in enumerate(agg_predictions)}

                no_agg_label_index = self.model.config.no_aggregation_label_index
                aggregators_prefix = {
                    i: aggregators[i] + " > " for i, pred in enumerate(agg_predictions) if pred != no_agg_label_index
                }
            else:
                logits = outputs[0]
                predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits.detach())
                answer_coordinates_batch = predictions[0]
                aggregators = {}
                aggregators_prefix = {}

            answers = []
            for index, coordinates in enumerate(answer_coordinates_batch):
                cells = [table.iat[coordinate] for coordinate in coordinates]
                aggregator = aggregators.get(index, "")
                aggregator_prefix = aggregators_prefix.get(index, "")
                answer = {
                    "answer": aggregator_prefix + ", ".join(cells),
                    "coordinates": coordinates,
                    "cells": [table.iat[coordinate] for coordinate in coordinates],
                }
                if aggregator:
                    answer["aggregator"] = aggregator

                answers.append(answer)
            if len(answer) == 0:
                raise PipelineException("Empty answer")
            batched_answers.append(answers if len(answers) > 1 else answers[0])
        return batched_answers if len(batched_answers) > 1 else batched_answers[0]