Spaces:
Sleeping
Sleeping
File size: 14,841 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import uuid
from typing import Any, Dict, List, Optional, Union
from ..file_utils import add_end_docstrings, is_tf_available, is_torch_available
from ..utils import logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class Conversation:
"""
Utility class containing a conversation and its history. This class is meant to be used as an input to the
:class:`~transformers.ConversationalPipeline`. The conversation contains a number of utility function to manage the
addition of new user input and generated model responses. A conversation needs to contain an unprocessed user input
before being passed to the :class:`~transformers.ConversationalPipeline`. This user input is either created when
the class is instantiated, or by calling :obj:`conversational_pipeline.append_response("input")` after a
conversation turn.
Arguments:
text (:obj:`str`, `optional`):
The initial user input to start the conversation. If not provided, a user input needs to be provided
manually using the :meth:`~transformers.Conversation.add_user_input` method before the conversation can
begin.
conversation_id (:obj:`uuid.UUID`, `optional`):
Unique identifier for the conversation. If not provided, a random UUID4 id will be assigned to the
conversation.
past_user_inputs (:obj:`List[str]`, `optional`):
Eventual past history of the conversation of the user. You don't need to pass it manually if you use the
pipeline interactively but if you want to recreate history you need to set both :obj:`past_user_inputs` and
:obj:`generated_responses` with equal length lists of strings
generated_responses (:obj:`List[str]`, `optional`):
Eventual past history of the conversation of the model. You don't need to pass it manually if you use the
pipeline interactively but if you want to recreate history you need to set both :obj:`past_user_inputs` and
:obj:`generated_responses` with equal length lists of strings
Usage::
conversation = Conversation("Going to the movies tonight - any suggestions?")
# Steps usually performed by the model when generating a response:
# 1. Mark the user input as processed (moved to the history)
conversation.mark_processed()
# 2. Append a mode response
conversation.append_response("The Big lebowski.")
conversation.add_user_input("Is it good?")
"""
def __init__(
self, text: str = None, conversation_id: uuid.UUID = None, past_user_inputs=None, generated_responses=None
):
if not conversation_id:
conversation_id = uuid.uuid4()
if past_user_inputs is None:
past_user_inputs = []
if generated_responses is None:
generated_responses = []
self.uuid: uuid.UUID = conversation_id
self.past_user_inputs: List[str] = past_user_inputs
self.generated_responses: List[str] = generated_responses
self.new_user_input: Optional[str] = text
def __eq__(self, other):
if not isinstance(other, Conversation):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def add_user_input(self, text: str, overwrite: bool = False):
"""
Add a user input to the conversation for the next round. This populates the internal :obj:`new_user_input`
field.
Args:
text (:obj:`str`): The user input for the next conversation round.
overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not existing and unprocessed user input should be overwritten when this function is called.
"""
if self.new_user_input:
if overwrite:
logger.warning(
f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten '
f'with: "{text}".'
)
self.new_user_input = text
else:
logger.warning(
f'User input added while unprocessed input was existing: "{self.new_user_input}" new input '
f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input'
)
else:
self.new_user_input = text
def mark_processed(self):
"""
Mark the conversation as processed (moves the content of :obj:`new_user_input` to :obj:`past_user_inputs`) and
empties the :obj:`new_user_input` field.
"""
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input)
self.new_user_input = None
def append_response(self, response: str):
"""
Append a response to the list of generated responses.
Args:
response (:obj:`str`): The model generated response.
"""
self.generated_responses.append(response)
def iter_texts(self):
"""
Iterates over all blobs of the conversation.
Returns: Iterator of (is_user, text_chunk) in chronological order of the conversation. ``is_user`` is a
:obj:`bool`, ``text_chunks`` is a :obj:`str`.
"""
for user_input, generated_response in zip(self.past_user_inputs, self.generated_responses):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__(self):
"""
Generates a string representation of the conversation.
Return:
:obj:`str`:
Example: Conversation id: 7d15686b-dc94-49f2-9c4b-c9eac6a1f114 user >> Going to the movies tonight - any
suggestions? bot >> The Big Lebowski
"""
output = f"Conversation id: {self.uuid} \n"
for is_user, text in self.iter_texts():
name = "user" if is_user else "bot"
output += f"{name} >> {text} \n"
return output
@add_end_docstrings(
PIPELINE_INIT_ARGS,
r"""
min_length_for_response (:obj:`int`, `optional`, defaults to 32):
The minimum length (in number of tokens) for a response.
""",
)
class ConversationalPipeline(Pipeline):
"""
Multi-turn conversational pipeline.
This conversational pipeline can currently be loaded from :func:`~transformers.pipeline` using the following task
identifier: :obj:`"conversational"`.
The models that this pipeline can use are models that have been fine-tuned on a multi-turn conversational task,
currently: `'microsoft/DialoGPT-small'`, `'microsoft/DialoGPT-medium'`, `'microsoft/DialoGPT-large'`. See the
up-to-date list of available models on `huggingface.co/models
<https://huggingface.co/models?filter=conversational>`__.
Usage::
conversational_pipeline = pipeline("conversational")
conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
conversation_2 = Conversation("What's the last book you have read?")
conversational_pipeline([conversation_1, conversation_2])
conversation_1.add_user_input("Is it an action movie?")
conversation_2.add_user_input("What is the genre of this book?")
conversational_pipeline([conversation_1, conversation_2])
"""
def __init__(self, min_length_for_response=32, *args, **kwargs):
super().__init__(*args, **kwargs)
# We need at least an eos_token
assert self.tokenizer.eos_token_id is not None, "ConversationalPipeline tokenizer should have an EOS token set"
if self.tokenizer.pad_token_id is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.min_length_for_response = min_length_for_response
def __call__(
self,
conversations: Union[Conversation, List[Conversation]],
clean_up_tokenization_spaces=True,
**generate_kwargs
):
r"""
Generate responses for the conversation(s) given as inputs.
Args:
conversations (a :class:`~transformers.Conversation` or a list of :class:`~transformers.Conversation`):
Conversations to generate responses for.
clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to clean up the potential extra spaces in the text output.
generate_kwargs:
Additional keyword arguments to pass along to the generate method of the model (see the generate method
corresponding to your framework `here <./model.html#generative-models>`__).
Returns:
:class:`~transformers.Conversation` or a list of :class:`~transformers.Conversation`: Conversation(s) with
updated generated responses for those containing a new user input.
"""
if isinstance(conversations, Conversation):
conversations = [conversations]
# Input validation
if isinstance(conversations, list):
for conversation in conversations:
assert isinstance(
conversation, Conversation
), "ConversationalPipeline expects a Conversation or list of Conversations as an input"
if conversation.new_user_input is None:
raise ValueError(
f"Conversation with UUID {type(conversation.uuid)} does not contain new user input to process. "
"Add user inputs with the conversation's `add_user_input` method"
)
assert (
self.tokenizer.pad_token_id is not None or self.tokenizer.eos_token_id is not None
), "Please make sure that the tokenizer has a pad_token_id or eos_token_id when using a batch input"
else:
raise ValueError("ConversationalPipeline expects a Conversation or list of Conversations as an input")
with self.device_placement():
inputs = self._parse_and_tokenize(conversations)
if self.framework == "pt":
inputs = self.ensure_tensor_on_device(**inputs)
input_length = inputs["input_ids"].shape[-1]
elif self.framework == "tf":
input_length = tf.shape(inputs["input_ids"])[-1].numpy()
generated_responses = self.model.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
**generate_kwargs,
)
if self.model.config.is_encoder_decoder:
if self.framework == "pt":
history = torch.cat((inputs["input_ids"], generated_responses[:, 1:]), 1)
elif self.framework == "tf":
history = tf.concat([inputs["input_ids"], generated_responses[:, 1:]], 1)
else:
history = generated_responses
history = self._clean_padding_history(history)
if self.model.config.is_encoder_decoder:
start_position = 1
else:
start_position = input_length
output = []
for conversation_index, conversation in enumerate(conversations):
conversation.mark_processed()
conversation.generated_responses.append(
self.tokenizer.decode(
generated_responses[conversation_index][start_position:],
skip_special_tokens=True,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
)
)
output.append(conversation)
if len(output) == 1:
return output[0]
else:
return output
def _clean_padding_history(self, generated_tensor) -> List[List[int]]:
"""
Cleans the padding history. Padding may be generated in two places when multiple conversations are provided as
an input:
- at the end of the concatenated history and new user input, so that all input to the model have the same
length
- at the end of the generated response, as some responses will be longer than others
This method cleans up these padding token so that the history for each conversation is not impacted by the
batching process.
"""
outputs = []
for sequence in generated_tensor:
sequence_tokens = []
is_previous_pad = False
for token in sequence:
if token == self.tokenizer.pad_token_id:
if self.tokenizer.pad_token_id != self.tokenizer.eos_token_id:
continue
if is_previous_pad:
continue
else:
is_previous_pad = True
else:
is_previous_pad = False
if self.framework == "pt":
sequence_tokens.append(token.item())
else:
sequence_tokens.append(int(token.numpy()))
outputs.append(sequence_tokens)
return outputs
def _legacy_parse_and_tokenize(self, conversation: List[Conversation]) -> List[int]:
eos_token_id = self.tokenizer.eos_token_id
input_ids = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.tokenizer.encode(text, add_special_tokens=False) + [eos_token_id])
if len(input_ids) > self.tokenizer.model_max_length:
input_ids = input_ids[-self.model_max_length :]
return input_ids
def _parse_and_tokenize(self, conversations: List[Conversation]) -> Dict[str, Any]:
if hasattr(self.tokenizer, "_build_conversation_input_ids"):
input_ids = [self.tokenizer._build_conversation_input_ids(conversation) for conversation in conversations]
else:
# If the tokenizer cannot handle conversations, we default to only the old version
input_ids = [self._legacy_parse_and_tokenize(conversation) for conversation in conversations]
inputs = self.tokenizer.pad(
{"input_ids": input_ids}, padding="longest", return_attention_mask=True, return_tensors=self.framework
)
return inputs
|