File size: 24,467 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.

# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union

from ..configuration_utils import PretrainedConfig
from ..feature_extraction_utils import PreTrainedFeatureExtractor
from ..file_utils import is_tf_available, is_torch_available
from ..models.auto.configuration_auto import AutoConfig
from ..models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING, AutoFeatureExtractor
from ..models.auto.tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer
from ..tokenization_utils import PreTrainedTokenizer
from ..utils import logging
from .automatic_speech_recognition import AutomaticSpeechRecognitionPipeline
from .base import (
    ArgumentHandler,
    CsvPipelineDataFormat,
    JsonPipelineDataFormat,
    PipedPipelineDataFormat,
    Pipeline,
    PipelineDataFormat,
    PipelineException,
    get_default_model,
    infer_framework_load_model,
)
from .conversational import Conversation, ConversationalPipeline
from .feature_extraction import FeatureExtractionPipeline
from .fill_mask import FillMaskPipeline
from .image_classification import ImageClassificationPipeline
from .question_answering import QuestionAnsweringArgumentHandler, QuestionAnsweringPipeline
from .table_question_answering import TableQuestionAnsweringArgumentHandler, TableQuestionAnsweringPipeline
from .text2text_generation import SummarizationPipeline, Text2TextGenerationPipeline, TranslationPipeline
from .text_classification import TextClassificationPipeline
from .text_generation import TextGenerationPipeline
from .token_classification import (
    AggregationStrategy,
    NerPipeline,
    TokenClassificationArgumentHandler,
    TokenClassificationPipeline,
)
from .zero_shot_classification import ZeroShotClassificationArgumentHandler, ZeroShotClassificationPipeline


if is_tf_available():
    import tensorflow as tf

    from ..models.auto.modeling_tf_auto import (
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
        TF_MODEL_WITH_LM_HEAD_MAPPING,
        TFAutoModel,
        TFAutoModelForCausalLM,
        TFAutoModelForMaskedLM,
        TFAutoModelForQuestionAnswering,
        TFAutoModelForSeq2SeqLM,
        TFAutoModelForSequenceClassification,
        TFAutoModelForTokenClassification,
    )

if is_torch_available():
    import torch

    from ..models.auto.modeling_auto import (
        MODEL_FOR_MASKED_LM_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
        AutoModel,
        AutoModelForCausalLM,
        AutoModelForImageClassification,
        AutoModelForMaskedLM,
        AutoModelForQuestionAnswering,
        AutoModelForSeq2SeqLM,
        AutoModelForSequenceClassification,
        AutoModelForTableQuestionAnswering,
        AutoModelForTokenClassification,
    )
if TYPE_CHECKING:
    from ..modeling_tf_utils import TFPreTrainedModel
    from ..modeling_utils import PreTrainedModel

logger = logging.get_logger(__name__)


# Register all the supported tasks here
TASK_ALIASES = {
    "sentiment-analysis": "text-classification",
    "ner": "token-classification",
}
SUPPORTED_TASKS = {
    "automatic-speech-recognition": {
        "impl": AutomaticSpeechRecognitionPipeline,
        "tf": (),
        # Only load from `config.architectures`, AutoModelForCTC and AutoModelForConditionalGeneration
        # do not exist yet.
        "pt": () if is_torch_available() else (),
        "default": {"model": {"pt": "facebook/wav2vec2-base-960h"}},
    },
    "feature-extraction": {
        "impl": FeatureExtractionPipeline,
        "tf": (TFAutoModel,) if is_tf_available() else (),
        "pt": (AutoModel,) if is_torch_available() else (),
        "default": {"model": {"pt": "distilbert-base-cased", "tf": "distilbert-base-cased"}},
    },
    "text-classification": {
        "impl": TextClassificationPipeline,
        "tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
        "pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": "distilbert-base-uncased-finetuned-sst-2-english",
                "tf": "distilbert-base-uncased-finetuned-sst-2-english",
            },
        },
    },
    "token-classification": {
        "impl": TokenClassificationPipeline,
        "tf": (TFAutoModelForTokenClassification,) if is_tf_available() else (),
        "pt": (AutoModelForTokenClassification,) if is_torch_available() else (),
        "default": {
            "model": {
                "pt": "dbmdz/bert-large-cased-finetuned-conll03-english",
                "tf": "dbmdz/bert-large-cased-finetuned-conll03-english",
            },
        },
    },
    "question-answering": {
        "impl": QuestionAnsweringPipeline,
        "tf": (TFAutoModelForQuestionAnswering,) if is_tf_available() else (),
        "pt": (AutoModelForQuestionAnswering,) if is_torch_available() else (),
        "default": {
            "model": {"pt": "distilbert-base-cased-distilled-squad", "tf": "distilbert-base-cased-distilled-squad"},
        },
    },
    "table-question-answering": {
        "impl": TableQuestionAnsweringPipeline,
        "pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (),
        "tf": (),
        "default": {
            "model": {
                "pt": "google/tapas-base-finetuned-wtq",
                "tokenizer": "google/tapas-base-finetuned-wtq",
                "tf": "google/tapas-base-finetuned-wtq",
            },
        },
    },
    "fill-mask": {
        "impl": FillMaskPipeline,
        "tf": (TFAutoModelForMaskedLM,) if is_tf_available() else (),
        "pt": (AutoModelForMaskedLM,) if is_torch_available() else (),
        "default": {"model": {"pt": "distilroberta-base", "tf": "distilroberta-base"}},
    },
    "summarization": {
        "impl": SummarizationPipeline,
        "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
        "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
        "default": {"model": {"pt": "sshleifer/distilbart-cnn-12-6", "tf": "t5-small"}},
    },
    # This task is a special case as it's parametrized by SRC, TGT languages.
    "translation": {
        "impl": TranslationPipeline,
        "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
        "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
        "default": {
            ("en", "fr"): {"model": {"pt": "t5-base", "tf": "t5-base"}},
            ("en", "de"): {"model": {"pt": "t5-base", "tf": "t5-base"}},
            ("en", "ro"): {"model": {"pt": "t5-base", "tf": "t5-base"}},
        },
    },
    "text2text-generation": {
        "impl": Text2TextGenerationPipeline,
        "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
        "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
        "default": {"model": {"pt": "t5-base", "tf": "t5-base"}},
    },
    "text-generation": {
        "impl": TextGenerationPipeline,
        "tf": (TFAutoModelForCausalLM,) if is_tf_available() else (),
        "pt": (AutoModelForCausalLM,) if is_torch_available() else (),
        "default": {"model": {"pt": "gpt2", "tf": "gpt2"}},
    },
    "zero-shot-classification": {
        "impl": ZeroShotClassificationPipeline,
        "tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
        "pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
        "default": {
            "model": {"pt": "facebook/bart-large-mnli", "tf": "roberta-large-mnli"},
            "config": {"pt": "facebook/bart-large-mnli", "tf": "roberta-large-mnli"},
            "tokenizer": {"pt": "facebook/bart-large-mnli", "tf": "roberta-large-mnli"},
        },
    },
    "conversational": {
        "impl": ConversationalPipeline,
        "tf": (TFAutoModelForSeq2SeqLM, TFAutoModelForCausalLM) if is_tf_available() else (),
        "pt": (AutoModelForSeq2SeqLM, AutoModelForCausalLM) if is_torch_available() else (),
        "default": {"model": {"pt": "microsoft/DialoGPT-medium", "tf": "microsoft/DialoGPT-medium"}},
    },
    "image-classification": {
        "impl": ImageClassificationPipeline,
        "tf": (),
        "pt": (AutoModelForImageClassification,) if is_torch_available() else (),
        "default": {"model": {"pt": "google/vit-base-patch16-224"}},
    },
}


def check_task(task: str) -> Tuple[Dict, Any]:
    """
    Checks an incoming task string, to validate it's correct and return the default Pipeline and Model classes, and
    default models if they exist.

    Args:
        task (:obj:`str`):
            The task defining which pipeline will be returned. Currently accepted tasks are:

            - :obj:`"feature-extraction"`
            - :obj:`"text-classification"`
            - :obj:`"sentiment-analysis"` (alias of :obj:`"text-classification")
            - :obj:`"token-classification"`
            - :obj:`"ner"` (alias of :obj:`"token-classification")
            - :obj:`"question-answering"`
            - :obj:`"fill-mask"`
            - :obj:`"summarization"`
            - :obj:`"translation_xx_to_yy"`
            - :obj:`"translation"`
            - :obj:`"text-generation"`
            - :obj:`"conversational"`

    Returns:
        (task_defaults:obj:`dict`, task_options: (:obj:`tuple`, None)) The actual dictionary required to initialize the
        pipeline and some extra task options for parametrized tasks like "translation_XX_to_YY"


    """
    if task in TASK_ALIASES:
        task = TASK_ALIASES[task]
    if task in SUPPORTED_TASKS:
        targeted_task = SUPPORTED_TASKS[task]
        return targeted_task, None

    if task.startswith("translation"):
        tokens = task.split("_")
        if len(tokens) == 4 and tokens[0] == "translation" and tokens[2] == "to":
            targeted_task = SUPPORTED_TASKS["translation"]
            return targeted_task, (tokens[1], tokens[3])
        raise KeyError(f"Invalid translation task {task}, use 'translation_XX_to_YY' format")

    raise KeyError(
        f"Unknown task {task}, available tasks are {list(SUPPORTED_TASKS.keys()) + ['translation_XX_to_YY']}"
    )


def pipeline(
    task: str,
    model: Optional = None,
    config: Optional[Union[str, PretrainedConfig]] = None,
    tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None,
    feature_extractor: Optional[Union[str, PreTrainedFeatureExtractor]] = None,
    framework: Optional[str] = None,
    revision: Optional[str] = None,
    use_fast: bool = True,
    use_auth_token: Optional[Union[str, bool]] = None,
    model_kwargs: Dict[str, Any] = {},
    **kwargs
) -> Pipeline:
    """
    Utility factory method to build a :class:`~transformers.Pipeline`.

    Pipelines are made of:

        - A :doc:`tokenizer <tokenizer>` in charge of mapping raw textual input to token.
        - A :doc:`model <model>` to make predictions from the inputs.
        - Some (optional) post processing for enhancing model's output.

    Args:
        task (:obj:`str`):
            The task defining which pipeline will be returned. Currently accepted tasks are:

            - :obj:`"feature-extraction"`: will return a :class:`~transformers.FeatureExtractionPipeline`.
            - :obj:`"text-classification"`: will return a :class:`~transformers.TextClassificationPipeline`.
            - :obj:`"sentiment-analysis"`: (alias of :obj:`"text-classification") will return a
              :class:`~transformers.TextClassificationPipeline`.
            - :obj:`"token-classification"`: will return a :class:`~transformers.TokenClassificationPipeline`.
            - :obj:`"ner"` (alias of :obj:`"token-classification"): will return a
              :class:`~transformers.TokenClassificationPipeline`.
            - :obj:`"question-answering"`: will return a :class:`~transformers.QuestionAnsweringPipeline`.
            - :obj:`"fill-mask"`: will return a :class:`~transformers.FillMaskPipeline`.
            - :obj:`"summarization"`: will return a :class:`~transformers.SummarizationPipeline`.
            - :obj:`"translation_xx_to_yy"`: will return a :class:`~transformers.TranslationPipeline`.
            - :obj:`"text2text-generation"`: will return a :class:`~transformers.Text2TextGenerationPipeline`.
            - :obj:`"text-generation"`: will return a :class:`~transformers.TextGenerationPipeline`.
            - :obj:`"zero-shot-classification:`: will return a :class:`~transformers.ZeroShotClassificationPipeline`.
            - :obj:`"conversational"`: will return a :class:`~transformers.ConversationalPipeline`.
        model (:obj:`str` or :obj:`~transformers.PreTrainedModel` or :obj:`~transformers.TFPreTrainedModel`, `optional`):
            The model that will be used by the pipeline to make predictions. This can be a model identifier or an
            actual instance of a pretrained model inheriting from :class:`~transformers.PreTrainedModel` (for PyTorch)
            or :class:`~transformers.TFPreTrainedModel` (for TensorFlow).

            If not provided, the default for the :obj:`task` will be loaded.
        config (:obj:`str` or :obj:`~transformers.PretrainedConfig`, `optional`):
            The configuration that will be used by the pipeline to instantiate the model. This can be a model
            identifier or an actual pretrained model configuration inheriting from
            :class:`~transformers.PretrainedConfig`.

            If not provided, the default configuration file for the requested model will be used. That means that if
            :obj:`model` is given, its default configuration will be used. However, if :obj:`model` is not supplied,
            this :obj:`task`'s default model's config is used instead.
        tokenizer (:obj:`str` or :obj:`~transformers.PreTrainedTokenizer`, `optional`):
            The tokenizer that will be used by the pipeline to encode data for the model. This can be a model
            identifier or an actual pretrained tokenizer inheriting from :class:`~transformers.PreTrainedTokenizer`.

            If not provided, the default tokenizer for the given :obj:`model` will be loaded (if it is a string). If
            :obj:`model` is not specified or not a string, then the default tokenizer for :obj:`config` is loaded (if
            it is a string). However, if :obj:`config` is also not given or not a string, then the default tokenizer
            for the given :obj:`task` will be loaded.
        feature_extractor (:obj:`str` or :obj:`~transformers.PreTrainedFeatureExtractor`, `optional`):
            The feature extractor that will be used by the pipeline to encode data for the model. This can be a model
            identifier or an actual pretrained feature extractor inheriting from
            :class:`~transformers.PreTrainedFeatureExtractor`.

            Feature extractors are used for non-NLP models, such as Speech or Vision models as well as multi-modal
            models. Multi-modal models will also require a tokenizer to be passed.

            If not provided, the default feature extractor for the given :obj:`model` will be loaded (if it is a
            string). If :obj:`model` is not specified or not a string, then the default feature extractor for
            :obj:`config` is loaded (if it is a string). However, if :obj:`config` is also not given or not a string,
            then the default feature extractor for the given :obj:`task` will be loaded.
        framework (:obj:`str`, `optional`):
            The framework to use, either :obj:`"pt"` for PyTorch or :obj:`"tf"` for TensorFlow. The specified framework
            must be installed.

            If no framework is specified, will default to the one currently installed. If no framework is specified and
            both frameworks are installed, will default to the framework of the :obj:`model`, or to PyTorch if no model
            is provided.
        revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
            When passing a task name or a string model identifier: The specific model version to use. It can be a
            branch name, a tag name, or a commit id, since we use a git-based system for storing models and other
            artifacts on huggingface.co, so ``revision`` can be any identifier allowed by git.
        use_fast (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether or not to use a Fast tokenizer if possible (a :class:`~transformers.PreTrainedTokenizerFast`).
        use_auth_token (:obj:`str` or `bool`, `optional`):
            The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token
            generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`).
            revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
        model_kwargs:
            Additional dictionary of keyword arguments passed along to the model's :obj:`from_pretrained(...,
            **model_kwargs)` function.
        kwargs:
            Additional keyword arguments passed along to the specific pipeline init (see the documentation for the
            corresponding pipeline class for possible values).

    Returns:
        :class:`~transformers.Pipeline`: A suitable pipeline for the task.

    Examples::

        >>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer

        >>> # Sentiment analysis pipeline
        >>> pipeline('sentiment-analysis')

        >>> # Question answering pipeline, specifying the checkpoint identifier
        >>> pipeline('question-answering', model='distilbert-base-cased-distilled-squad', tokenizer='bert-base-cased')

        >>> # Named entity recognition pipeline, passing in a specific model and tokenizer
        >>> model = AutoModelForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
        >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
        >>> pipeline('ner', model=model, tokenizer=tokenizer)
    """
    if model is None and tokenizer is not None:
        raise RuntimeError(
            "Impossible to instantiate a pipeline with tokenizer specified but not the model "
            "as the provided tokenizer may not be compatible with the default model. "
            "Please provide a PreTrainedModel class or a path/identifier to a pretrained model when providing tokenizer."
        )
    if model is None and feature_extractor is not None:
        raise RuntimeError(
            "Impossible to instantiate a pipeline with feature_extractor specified but not the model "
            "as the provided feature_extractor may not be compatible with the default model. "
            "Please provide a PreTrainedModel class or a path/identifier to a pretrained model when providing feature_extractor."
        )

    # Retrieve the task
    targeted_task, task_options = check_task(task)
    task_class = targeted_task["impl"]

    # Use default model/config/tokenizer for the task if no model is provided
    if model is None:
        # At that point framework might still be undetermined
        model = get_default_model(targeted_task, framework, task_options)

    # Config is the primordial information item.
    # Instantiate config if needed
    if isinstance(config, str):
        config = AutoConfig.from_pretrained(config, revision=revision, _from_pipeline=task, **model_kwargs)
    elif config is None and isinstance(model, str):
        config = AutoConfig.from_pretrained(model, revision=revision, _from_pipeline=task, **model_kwargs)

    model_name = model if isinstance(model, str) else None

    # Retrieve use_auth_token and add it to model_kwargs to be used in .from_pretrained
    model_kwargs["use_auth_token"] = model_kwargs.get("use_auth_token", use_auth_token)

    # Infer the framework from the model
    # Forced if framework already defined, inferred if it's None
    # Will load the correct model if possible
    model_classes = {"tf": targeted_task["tf"], "pt": targeted_task["pt"]}
    framework, model = infer_framework_load_model(
        model,
        model_classes=model_classes,
        config=config,
        framework=framework,
        revision=revision,
        task=task,
        **model_kwargs,
    )

    model_config = model.config

    load_tokenizer = type(model_config) in TOKENIZER_MAPPING
    load_feature_extractor = type(model_config) in FEATURE_EXTRACTOR_MAPPING

    if load_tokenizer:
        # Try to infer tokenizer from model or config name (if provided as str)
        if tokenizer is None:
            if isinstance(model_name, str):
                tokenizer = model_name
            elif isinstance(config, str):
                tokenizer = config
            else:
                # Impossible to guess what is the right tokenizer here
                raise Exception(
                    "Impossible to guess which tokenizer to use. "
                    "Please provide a PreTrainedTokenizer class or a path/identifier to a pretrained tokenizer."
                )

        # Instantiate tokenizer if needed
        if isinstance(tokenizer, (str, tuple)):
            if isinstance(tokenizer, tuple):
                # For tuple we have (tokenizer name, {kwargs})
                use_fast = tokenizer[1].pop("use_fast", use_fast)
                tokenizer_identifier = tokenizer[0]
                tokenizer_kwargs = tokenizer[1]
            else:
                tokenizer_identifier = tokenizer
                tokenizer_kwargs = model_kwargs

            tokenizer = AutoTokenizer.from_pretrained(
                tokenizer_identifier, revision=revision, use_fast=use_fast, _from_pipeline=task, **tokenizer_kwargs
            )

    if load_feature_extractor:
        # Try to infer feature extractor from model or config name (if provided as str)
        if feature_extractor is None:
            if isinstance(model_name, str):
                feature_extractor = model_name
            elif isinstance(config, str):
                feature_extractor = config
            else:
                # Impossible to guess what is the right feature_extractor here
                raise Exception(
                    "Impossible to guess which feature extractor to use. "
                    "Please provide a PreTrainedFeatureExtractor class or a path/identifier "
                    "to a pretrained feature extractor."
                )

        # Instantiate feature_extractor if needed
        if isinstance(feature_extractor, (str, tuple)):
            feature_extractor = AutoFeatureExtractor.from_pretrained(
                feature_extractor, revision=revision, _from_pipeline=task, **model_kwargs
            )

    if task == "translation" and model.config.task_specific_params:
        for key in model.config.task_specific_params:
            if key.startswith("translation"):
                task = key
                warnings.warn(
                    f'"translation" task was used, instead of "translation_XX_to_YY", defaulting to "{task}"',
                    UserWarning,
                )
                break

    if tokenizer is not None:
        kwargs["tokenizer"] = tokenizer

    if feature_extractor is not None:
        kwargs["feature_extractor"] = feature_extractor

    return task_class(model=model, framework=framework, task=task, **kwargs)