File size: 7,860 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
from collections import OrderedDict
from typing import Any, Mapping, Optional

from transformers import PretrainedConfig, PreTrainedTokenizer, TensorType

from .utils import ParameterFormat, compute_effective_axis_dimension, compute_serialized_parameters_size


DEFAULT_ONNX_OPSET = 11

# 2 Gb
EXTERNAL_DATA_FORMAT_SIZE_LIMIT = 2 * 1024 * 1024 * 1024


class OnnxConfig(ABC):
    """
    Base class for ONNX exportable model describing metadata on how to export the model through the ONNX format.
    """

    DEFAULT_FIXED_BATCH = 2
    DEFAULT_FIXED_SEQUENCE = 8

    def __init__(self, config: PretrainedConfig):
        self._config = config

    @classmethod
    def default(cls, config: PretrainedConfig) -> "OnnxConfig":
        """
        Instantiate a OnnxConfig for a specific model

        Args:
            config: The model's configuration to use when exporting to ONNX

        Returns:
            OnnxConfig for this model
        """
        return cls(config)

    @property
    @abstractmethod
    def inputs(self) -> Mapping[str, Mapping[int, str]]:
        """
        Mapping containing the axis definition of the input tensors to provide to the model

        Returns:
            For each input: its name associated to the axes symbolic name and the axis position within the tensor
        """
        raise NotImplementedError()

    @property
    @abstractmethod
    def outputs(self) -> Mapping[str, Mapping[int, str]]:
        """
        Mapping containing the axis definition of the output tensors to provide to the model

        Returns:
            For each output: its name associated to the axes symbolic name and the axis position within the tensor
        """
        raise NotImplementedError()

    @property
    def values_override(self) -> Optional[Mapping[str, Any]]:
        """
        Dictionary of keys to override in the model's config before exporting

        Returns:
            Dictionary with the keys (and their corresponding values) to override
        """
        if hasattr(self._config, "use_cache"):
            return {"use_cache": False}

        return None

    @property
    def default_batch_size(self) -> int:
        """
        The default batch size to use if no other indication

        Returns:
            Integer > 0
        """
        # Using 2 avoid ONNX making assumption about single sample batch
        return OnnxConfig.DEFAULT_FIXED_BATCH

    @property
    def default_sequence_length(self) -> int:
        """
        The default sequence length to use if no other indication

        Returns:
            Integer > 0
        """
        return OnnxConfig.DEFAULT_FIXED_SEQUENCE

    @property
    def default_onnx_opset(self) -> int:
        """
        Which onnx opset to use when exporting the model

        Returns:
            Integer ONNX Opset version
        """
        return DEFAULT_ONNX_OPSET

    @staticmethod
    def use_external_data_format(num_parameters: int) -> bool:
        """
        Flag indicating if the model requires using external data format

        Args:
            num_parameters: Number of parameter on the model

        Returns:
            True if model.num_parameters() * size_of(float32) >= 2Gb False otherwise
        """

        return (
            compute_serialized_parameters_size(num_parameters, ParameterFormat.Float)
            >= EXTERNAL_DATA_FORMAT_SIZE_LIMIT
        )

    def generate_dummy_inputs(
        self,
        tokenizer: PreTrainedTokenizer,
        batch_size: int = -1,
        seq_length: int = -1,
        is_pair: bool = False,
        framework: Optional[TensorType] = None,
    ) -> Mapping[str, Any]:
        """
        Generate inputs to provide to the ONNX exporter for the specific framework

        Args:
            tokenizer: The tokenizer associated with this model configuration
            batch_size: The batch size (int) to export the model for (-1 means dynamic axis)
            seq_length: The sequence length (int) to export the model for (-1 means dynamic axis)
            is_pair: Indicate if the input is a pair (sentence 1, sentence 2)
            framework: The framework (optional) the tokenizer will generate tensor for

        Returns:
            Mapping[str, Tensor] holding the kwargs to provide to the model's forward function
        """

        # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
        batch_size = compute_effective_axis_dimension(
            batch_size, fixed_dimension=OnnxConfig.DEFAULT_FIXED_BATCH, num_token_to_add=0
        )

        # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
        token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
        seq_length = compute_effective_axis_dimension(
            seq_length, fixed_dimension=OnnxConfig.DEFAULT_FIXED_SEQUENCE, num_token_to_add=token_to_add
        )

        # Generate dummy inputs according to compute batch and sequence
        dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
        return dict(tokenizer(dummy_input, return_tensors=framework))


class OnnxConfigWithPast(OnnxConfig, ABC):
    def __init__(self, config: PretrainedConfig, use_past: bool = False):
        super().__init__(config)
        self.use_past = use_past

    @classmethod
    def with_past(cls, config: PretrainedConfig) -> "OnnxConfigWithPast":
        """
        Instantiate a OnnxConfig with `use_past` attribute set to True

        Args:
            config: The underlying model's config to use when exporting to ONNX

        Returns:
            OnnxConfig with `.use_past = True`
        """
        return cls(config, use_past=True)

    @property
    def values_override(self) -> Optional[Mapping[str, Any]]:
        if hasattr(self._config, "use_cache"):
            return {"use_cache": self.use_past}

        return None

    def generate_dummy_inputs(
        self,
        tokenizer: PreTrainedTokenizer,
        batch_size: int = -1,
        seq_length: int = -1,
        is_pair: bool = False,
        framework: Optional[TensorType] = None,
    ) -> Mapping[str, Any]:
        # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
        batch_size = compute_effective_axis_dimension(
            batch_size, fixed_dimension=self.default_batch_size, num_token_to_add=0
        )

        # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
        token_to_add = tokenizer.num_special_tokens_to_add(is_pair)

        # When use_past the caching mechanism requires inputs to be only 1 single token
        fixed_sequence_length = 1 if self.use_past else self.default_sequence_length
        seq_length = compute_effective_axis_dimension(
            seq_length, fixed_dimension=fixed_sequence_length, num_token_to_add=token_to_add
        )

        # Generate dummy inputs according to compute batch and sequence
        dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
        return OrderedDict(dict(tokenizer(dummy_input, return_tensors=framework)))