Spaces:
Sleeping
Sleeping
File size: 8,395 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" OpenAI GPT configuration """
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"}
class OpenAIGPTConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a :class:`~transformers.OpenAIGPTModel` or a
:class:`~transformers.TFOpenAIGPTModel`. It is used to instantiate a GPT model according to the specified
arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar
configuration to that of the `GPT <https://huggingface.co/openai-gpt>`__ architecture from OpenAI.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 40478):
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.OpenAIGPTModel` or
:class:`~transformers.TFOpenAIGPTModel`.
n_positions (:obj:`int`, `optional`, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
n_ctx (:obj:`int`, `optional`, defaults to 512):
Dimensionality of the causal mask (usually same as n_positions).
n_embd (:obj:`int`, `optional`, defaults to 768):
Dimensionality of the embeddings and hidden states.
n_layer (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (:obj:`int`, `optional`, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
afn (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
resid_pdrop (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (:obj:`int`, `optional`, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (:obj:`float`, `optional`, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (:obj:`float`, `optional`, defaults to 1e-5):
The epsilon to use in the layer normalization layers
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
predict_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not special tokens should be predicted when the model has a language modeling head.
summary_type (:obj:`str`, `optional`, defaults to :obj:`"cls_index"`):
Argument used when doing sequence summary, used in the models
:class:`~transformers.OpenAIGPTDoubleHeadsModel` and :class:`~transformers.OpenAIGPTDoubleHeadsModel`.
Has to be one of the following options:
- :obj:`"last"`: Take the last token hidden state (like XLNet).
- :obj:`"first"`: Take the first token hidden state (like BERT).
- :obj:`"mean"`: Take the mean of all tokens hidden states.
- :obj:`"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- :obj:`"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (:obj:`bool`, `optional`, defaults to :obj:`True`):
Argument used when doing sequence summary, used in the models
:class:`~transformers.OpenAIGPTDoubleHeadsModel` and :class:`~transformers.OpenAIGPTDoubleHeadsModel`.
Whether or not to add a projection after the vector extraction.
summary_activation (:obj:`str`, `optional`):
Argument used when doing sequence summary, used in the models
:class:`~transformers.OpenAIGPTDoubleHeadsModel` and :class:`~transformers.OpenAIGPTDoubleHeadsModel`.
Pass :obj:`"tanh"` for a tanh activation to the output, any other value will result in no activation.
summary_proj_to_labels (:obj:`bool`, `optional`, defaults to :obj:`True`):
Argument used when doing sequence summary, used in the models
:class:`~transformers.OpenAIGPTDoubleHeadsModel` and :class:`~transformers.OpenAIGPTDoubleHeadsModel`.
Whether the projection outputs should have :obj:`config.num_labels` or :obj:`config.hidden_size` classes.
summary_first_dropout (:obj:`float`, `optional`, defaults to 0.1):
Argument used when doing sequence summary, used in the models
:class:`~transformers.OpenAIGPTDoubleHeadsModel` and :class:`~transformers.OpenAIGPTDoubleHeadsModel`.
The dropout ratio to be used after the projection and activation.
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return the last key/values attentions (not used by all models).
Examples::
>>> from transformers import OpenAIGPTConfig, OpenAIGPTModel
>>> # Initializing a GPT configuration
>>> configuration = OpenAIGPTConfig()
>>> # Initializing a model from the configuration
>>> model = OpenAIGPTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "openai-gpt"
def __init__(
self,
vocab_size=40478,
n_positions=512,
n_ctx=512,
n_embd=768,
n_layer=12,
n_head=12,
afn="gelu",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
predict_special_tokens=True,
summary_type="cls_index",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
**kwargs
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.n_ctx = n_ctx
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.afn = afn
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.predict_special_tokens = predict_special_tokens
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_first_dropout = summary_first_dropout
self.summary_proj_to_labels = summary_proj_to_labels
@property
def max_position_embeddings(self):
return self.n_positions
@property
def hidden_size(self):
return self.n_embd
@property
def num_attention_heads(self):
return self.n_head
@property
def num_hidden_layers(self):
return self.n_layer
|