File size: 7,804 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MobileBERT model configuration """

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)

MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/config.json"
}


class MobileBertConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a :class:`~transformers.MobileBertModel` or a
    :class:`~transformers.TFMobileBertModel`. It is used to instantiate a MobileBERT model according to the specified
    arguments, defining the model architecture.

    Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
    outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.


    Args:
        vocab_size (:obj:`int`, `optional`, defaults to 30522):
            Vocabulary size of the MobileBERT model. Defines the number of different tokens that can be represented by
            the :obj:`inputs_ids` passed when calling :class:`~transformers.MobileBertModel` or
            :class:`~transformers.TFMobileBertModel`.
        hidden_size (:obj:`int`, `optional`, defaults to 512):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (:obj:`int`, `optional`, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (:obj:`int`, `optional`, defaults to 4):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (:obj:`int`, `optional`, defaults to 512):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"relu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string,
            :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
        hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (:obj:`int`, `optional`, defaults to 2):
            The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.MobileBertModel`
            or :class:`~transformers.TFMobileBertModel`.
        initializer_range (:obj:`float`, `optional`, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
            The epsilon used by the layer normalization layers.

        pad_token_id (:obj:`int`, `optional`, defaults to 0):
            The ID of the token in the word embedding to use as padding.
        embedding_size (:obj:`int`, `optional`, defaults to 128):
            The dimension of the word embedding vectors.
        trigram_input (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Use a convolution of trigram as input.
        use_bottleneck (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether to use bottleneck in BERT.
        intra_bottleneck_size (:obj:`int`, `optional`, defaults to 128):
            Size of bottleneck layer output.
        use_bottleneck_attention (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether to use attention inputs from the bottleneck transformation.
        key_query_shared_bottleneck (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether to use the same linear transformation for query&key in the bottleneck.
        num_feedforward_networks (:obj:`int`, `optional`, defaults to 4):
            Number of FFNs in a block.
        normalization_type (:obj:`str`, `optional`, defaults to :obj:`"no_norm"`):
            The normalization type in MobileBERT.

    Examples::

        >>> from transformers import MobileBertModel, MobileBertConfig

        >>> # Initializing a MobileBERT configuration
        >>> configuration = MobileBertConfig()

        >>> # Initializing a model from the configuration above
        >>> model = MobileBertModel(configuration)

        >>> # Accessing the model configuration
        >>> configuration = model.config

    Attributes: pretrained_config_archive_map (Dict[str, str]): A dictionary containing all the available pre-trained
    checkpoints.
    """
    pretrained_config_archive_map = MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
    model_type = "mobilebert"

    def __init__(
        self,
        vocab_size=30522,
        hidden_size=512,
        num_hidden_layers=24,
        num_attention_heads=4,
        intermediate_size=512,
        hidden_act="relu",
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=2,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        pad_token_id=0,
        embedding_size=128,
        trigram_input=True,
        use_bottleneck=True,
        intra_bottleneck_size=128,
        use_bottleneck_attention=False,
        key_query_shared_bottleneck=True,
        num_feedforward_networks=4,
        normalization_type="no_norm",
        classifier_activation=True,
        **kwargs
    ):
        super().__init__(pad_token_id=pad_token_id, **kwargs)

        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.embedding_size = embedding_size
        self.trigram_input = trigram_input
        self.use_bottleneck = use_bottleneck
        self.intra_bottleneck_size = intra_bottleneck_size
        self.use_bottleneck_attention = use_bottleneck_attention
        self.key_query_shared_bottleneck = key_query_shared_bottleneck
        self.num_feedforward_networks = num_feedforward_networks
        self.normalization_type = normalization_type
        self.classifier_activation = classifier_activation

        if self.use_bottleneck:
            self.true_hidden_size = intra_bottleneck_size
        else:
            self.true_hidden_size = hidden_size