File size: 8,333 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# coding=utf-8
# Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MBART model configuration """

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)

MBART_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/config.json",
    # See all MBART models at https://huggingface.co/models?filter=mbart
}


class MBartConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a :class:`~transformers.MBartModel`. It is used to
    instantiate an MBART model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the MBART `facebook/mbart-large-cc25
    <https://huggingface.co/facebook/mbart-large-cc25>`__ architecture.

    Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
    outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.


    Args:
        vocab_size (:obj:`int`, `optional`, defaults to 50265):
            Vocabulary size of the MBART model. Defines the number of different tokens that can be represented by the
            :obj:`inputs_ids` passed when calling :class:`~transformers.MBartModel` or
            :class:`~transformers.TFMBartModel`.
        d_model (:obj:`int`, `optional`, defaults to 1024):
            Dimensionality of the layers and the pooler layer.
        encoder_layers (:obj:`int`, `optional`, defaults to 12):
            Number of encoder layers.
        decoder_layers (:obj:`int`, `optional`, defaults to 12):
            Number of decoder layers.
        encoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
            Number of attention heads for each attention layer in the Transformer decoder.
        decoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        encoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string,
            :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
        dropout (:obj:`float`, `optional`, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (:obj:`float`, `optional`, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        classifier_dropout (:obj:`float`, `optional`, defaults to 0.0):
            The dropout ratio for classifier.
        max_position_embeddings (:obj:`int`, `optional`, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        init_std (:obj:`float`, `optional`, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        encoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
            The LayerDrop probability for the encoder. See the `LayerDrop paper <see
            https://arxiv.org/abs/1909.11556>`__ for more details.
        decoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
            The LayerDrop probability for the decoder. See the `LayerDrop paper <see
            https://arxiv.org/abs/1909.11556>`__ for more details.
        gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
            If True, use gradient checkpointing to save memory at the expense of slower backward pass.
        scale_embedding (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Scale embeddings by diving by sqrt(d_model).
        use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether or not the model should return the last key/values attentions (not used by all models)
        forced_eos_token_id (:obj:`int`, `optional`, defaults to 2):
            The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to
            :obj:`eos_token_id`.

    Example::

        >>> from transformers import MBartModel, MBartConfig

        >>> # Initializing a MBART facebook/mbart-large-cc25 style configuration
        >>> configuration = MBartConfig()

        >>> # Initializing a model from the facebook/mbart-large-cc25 style configuration
        >>> model = MBartModel(configuration)

        >>> # Accessing the model configuration
        >>> configuration = model.config
    """
    model_type = "mbart"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=50265,
        max_position_embeddings=1024,
        encoder_layers=12,
        encoder_ffn_dim=4096,
        encoder_attention_heads=16,
        decoder_layers=12,
        decoder_ffn_dim=4096,
        decoder_attention_heads=16,
        encoder_layerdrop=0.0,
        decoder_layerdrop=0.0,
        use_cache=True,
        is_encoder_decoder=True,
        activation_function="gelu",
        d_model=1024,
        dropout=0.1,
        attention_dropout=0.0,
        activation_dropout=0.0,
        init_std=0.02,
        classifier_dropout=0.0,
        scale_embedding=False,
        gradient_checkpointing=False,
        pad_token_id=1,
        bos_token_id=0,
        eos_token_id=2,
        forced_eos_token_id=2,
        **kwargs
    ):
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            is_encoder_decoder=is_encoder_decoder,
            forced_eos_token_id=forced_eos_token_id,
            **kwargs,
        )

        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.d_model = d_model
        self.encoder_ffn_dim = encoder_ffn_dim
        self.encoder_layers = encoder_layers
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_ffn_dim = decoder_ffn_dim
        self.decoder_layers = decoder_layers
        self.decoder_attention_heads = decoder_attention_heads
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.activation_function = activation_function
        self.init_std = init_std
        self.encoder_layerdrop = encoder_layerdrop
        self.decoder_layerdrop = decoder_layerdrop
        self.classifier_dropout = classifier_dropout
        self.use_cache = use_cache
        self.num_hidden_layers = encoder_layers
        self.gradient_checkpointing = gradient_checkpointing
        self.scale_embedding = scale_embedding  # scale factor will be sqrt(d_model) if True

    @property
    def num_attention_heads(self) -> int:
        return self.encoder_attention_heads

    @property
    def hidden_size(self) -> int:
        return self.d_model