Spaces:
Sleeping
Sleeping
File size: 15,286 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import re
import warnings
from contextlib import contextmanager
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
VOCAB_FILES_NAMES = {
"source_spm": "source.spm",
"target_spm": "target.spm",
"vocab": "vocab.json",
"tokenizer_config_file": "tokenizer_config.json",
}
PRETRAINED_VOCAB_FILES_MAP = {
"source_spm": {
"Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/source.spm"
},
"target_spm": {
"Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/target.spm"
},
"vocab": {
"Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/vocab.json"
},
"tokenizer_config_file": {
"Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/tokenizer_config.json"
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"Helsinki-NLP/opus-mt-en-de": 512}
PRETRAINED_INIT_CONFIGURATION = {}
# Example URL https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/vocab.json
class MarianTokenizer(PreTrainedTokenizer):
r"""
Construct a Marian tokenizer. Based on `SentencePiece <https://github.com/google/sentencepiece>`__.
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
Users should refer to this superclass for more information regarding those methods.
Args:
source_spm (:obj:`str`):
`SentencePiece <https://github.com/google/sentencepiece>`__ file (generally has a .spm extension) that
contains the vocabulary for the source language.
target_spm (:obj:`str`):
`SentencePiece <https://github.com/google/sentencepiece>`__ file (generally has a .spm extension) that
contains the vocabulary for the target language.
source_lang (:obj:`str`, `optional`):
A string representing the source language.
target_lang (:obj:`str`, `optional`):
A string representing the target language.
unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`):
The end of sequence token.
pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
model_max_length (:obj:`int`, `optional`, defaults to 512):
The maximum sentence length the model accepts.
additional_special_tokens (:obj:`List[str]`, `optional`, defaults to :obj:`["<eop>", "<eod>"]`):
Additional special tokens used by the tokenizer.
sp_model_kwargs (:obj:`dict`, `optional`):
Will be passed to the ``SentencePieceProcessor.__init__()`` method. The `Python wrapper for SentencePiece
<https://github.com/google/sentencepiece/tree/master/python>`__ can be used, among other things, to set:
- ``enable_sampling``: Enable subword regularization.
- ``nbest_size``: Sampling parameters for unigram. Invalid for BPE-Dropout.
- ``nbest_size = {0,1}``: No sampling is performed.
- ``nbest_size > 1``: samples from the nbest_size results.
- ``nbest_size < 0``: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- ``alpha``: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Examples::
>>> from transformers import MarianTokenizer
>>> tokenizer = MarianTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-de')
>>> src_texts = [ "I am a small frog.", "Tom asked his teacher for advice."]
>>> tgt_texts = ["Ich bin ein kleiner Frosch.", "Tom bat seinen Lehrer um Rat."] # optional
>>> inputs = tokenizer(src_texts, return_tensors="pt", padding=True)
>>> with tokenizer.as_target_tokenizer():
... labels = tokenizer(tgt_texts, return_tensors="pt", padding=True)
>>> inputs["labels"] = labels["input_ids"]
# keys [input_ids, attention_mask, labels].
>>> outputs = model(**inputs) should work
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
language_code_re = re.compile(">>.+<<") # type: re.Pattern
def __init__(
self,
vocab,
source_spm,
target_spm,
source_lang=None,
target_lang=None,
unk_token="<unk>",
eos_token="</s>",
pad_token="<pad>",
model_max_length=512,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs
) -> None:
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
# bos_token=bos_token, unused. Start decoding with config.decoder_start_token_id
source_lang=source_lang,
target_lang=target_lang,
unk_token=unk_token,
eos_token=eos_token,
pad_token=pad_token,
model_max_length=model_max_length,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
assert Path(source_spm).exists(), f"cannot find spm source {source_spm}"
self.encoder = load_json(vocab)
if self.unk_token not in self.encoder:
raise KeyError("<unk> token must be in vocab")
assert self.pad_token in self.encoder
self.decoder = {v: k for k, v in self.encoder.items()}
self.source_lang = source_lang
self.target_lang = target_lang
self.supported_language_codes: list = [k for k in self.encoder if k.startswith(">>") and k.endswith("<<")]
self.spm_files = [source_spm, target_spm]
# load SentencePiece model for pre-processing
self.spm_source = load_spm(source_spm, self.sp_model_kwargs)
self.spm_target = load_spm(target_spm, self.sp_model_kwargs)
self.current_spm = self.spm_source
# Multilingual target side: default to using first supported language code.
self._setup_normalizer()
def _setup_normalizer(self):
try:
from sacremoses import MosesPunctNormalizer
self.punc_normalizer = MosesPunctNormalizer(self.source_lang).normalize
except (ImportError, FileNotFoundError):
warnings.warn("Recommended: pip install sacremoses.")
self.punc_normalizer = lambda x: x
def normalize(self, x: str) -> str:
"""Cover moses empty string edge case. They return empty list for '' input!"""
return self.punc_normalizer(x) if x else ""
def _convert_token_to_id(self, token):
return self.encoder.get(token, self.encoder[self.unk_token])
def remove_language_code(self, text: str):
"""Remove language codes like >>fr<< before sentencepiece"""
match = self.language_code_re.match(text)
code: list = [match.group(0)] if match else []
return code, self.language_code_re.sub("", text)
def _tokenize(self, text: str) -> List[str]:
code, text = self.remove_language_code(text)
pieces = self.current_spm.encode(text, out_type=str)
return code + pieces
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (integer) in a token (str) using the decoder."""
return self.decoder.get(index, self.unk_token)
def batch_decode(self, sequences, **kwargs):
"""
Convert a list of lists of token ids into a list of strings by calling decode.
Args:
sequences (:obj:`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the ``__call__`` method.
skip_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to remove special tokens in the decoding.
clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to clean up the tokenization spaces.
use_source_tokenizer (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use the source tokenizer to decode sequences (only applicable in sequence-to-sequence
problems).
kwargs (additional keyword arguments, `optional`):
Will be passed to the underlying model specific decode method.
Returns:
:obj:`List[str]`: The list of decoded sentences.
"""
return super().batch_decode(sequences, **kwargs)
def decode(self, token_ids, **kwargs):
"""
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
tokens and clean up tokenization spaces.
Similar to doing ``self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))``.
Args:
token_ids (:obj:`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
List of tokenized input ids. Can be obtained using the ``__call__`` method.
skip_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to remove special tokens in the decoding.
clean_up_tokenization_spaces (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to clean up the tokenization spaces.
use_source_tokenizer (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use the source tokenizer to decode sequences (only applicable in sequence-to-sequence
problems).
kwargs (additional keyword arguments, `optional`):
Will be passed to the underlying model specific decode method.
Returns:
:obj:`str`: The decoded sentence.
"""
return super().decode(token_ids, **kwargs)
def convert_tokens_to_string(self, tokens: List[str]) -> str:
"""Uses source spm if _decode_use_source_tokenizer is True, and target spm otherwise"""
if self._decode_use_source_tokenizer:
return self.spm_source.DecodePieces(tokens)
else:
return self.spm_target.DecodePieces(tokens)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
"""Build model inputs from a sequence by appending eos_token_id."""
if token_ids_1 is None:
return token_ids_0 + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_0 + token_ids_1 + [self.eos_token_id]
@contextmanager
def as_target_tokenizer(self):
"""
Temporarily sets the tokenizer for encoding the targets. Useful for tokenizer associated to
sequence-to-sequence models that need a slightly different processing for the labels.
"""
self.current_spm = self.spm_target
yield
self.current_spm = self.spm_source
@property
def vocab_size(self) -> int:
return len(self.encoder)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
save_dir = Path(save_directory)
assert save_dir.is_dir(), f"{save_directory} should be a directory"
save_json(
self.encoder,
save_dir / ((filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab"]),
)
for orig, f in zip(["source.spm", "target.spm"], self.spm_files):
dest_path = save_dir / ((filename_prefix + "-" if filename_prefix else "") + Path(f).name)
if not dest_path.exists():
copyfile(f, save_dir / orig)
return tuple(
save_dir / ((filename_prefix + "-" if filename_prefix else "") + f) for f in self.vocab_files_names
)
def get_vocab(self) -> Dict:
vocab = self.encoder.copy()
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__(self) -> Dict:
state = self.__dict__.copy()
state.update({k: None for k in ["spm_source", "spm_target", "current_spm", "punc_normalizer"]})
return state
def __setstate__(self, d: Dict) -> None:
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.spm_source, self.spm_target = (load_spm(f, self.sp_model_kwargs) for f in self.spm_files)
self.current_spm = self.spm_source
self._setup_normalizer()
def num_special_tokens_to_add(self, **unused):
"""Just EOS"""
return 1
def _special_token_mask(self, seq):
all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""Get list where entries are [1] if a token is [eos] or [pad] else 0."""
if already_has_special_tokens:
return self._special_token_mask(token_ids_0)
elif token_ids_1 is None:
return self._special_token_mask(token_ids_0) + [1]
else:
return self._special_token_mask(token_ids_0 + token_ids_1) + [1]
def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor:
spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs)
spm.Load(path)
return spm
def save_json(data, path: str) -> None:
with open(path, "w") as f:
json.dump(data, f, indent=2)
def load_json(path: str) -> Union[Dict, List]:
with open(path, "r") as f:
return json.load(f)
|