File size: 63,091 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
# coding=utf-8
# Copyright Studio Ousia and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch LUKE model. """

import math
from dataclasses import dataclass
from typing import Optional, Tuple

import torch
import torch.utils.checkpoint
from torch import nn

from ...activations import ACT2FN
from ...file_utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    replace_return_docstrings,
)
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import PreTrainedModel, apply_chunking_to_forward
from ...utils import logging
from .configuration_luke import LukeConfig


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "LukeConfig"
_TOKENIZER_FOR_DOC = "LukeTokenizer"
_CHECKPOINT_FOR_DOC = "studio-ousia/luke-base"

LUKE_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "studio-ousia/luke-base",
    "studio-ousia/luke-large",
    # See all LUKE models at https://huggingface.co/models?filter=luke
]


@dataclass
class BaseLukeModelOutputWithPooling(BaseModelOutputWithPooling):
    """
    Base class for outputs of the LUKE model.

    Args:
        last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        entity_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, entity_length, hidden_size)`):
            Sequence of entity hidden-states at the output of the last layer of the model.
        pooler_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`):
            Last layer hidden-state of the first token of the sequence (classification token) further processed by a
            Linear layer and a Tanh activation function.
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of
            each layer plus the initial embedding outputs.
        entity_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output
            of each layer plus the initial entity embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length + entity_length, sequence_length + entity_length)`. Attentions weights after the attention
            softmax, used to compute the weighted average in the self-attention heads.
    """

    entity_last_hidden_state: torch.FloatTensor = None
    entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class BaseLukeModelOutput(BaseModelOutput):
    """
    Base class for model's outputs, with potential hidden states and attentions.

    Args:
        last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        entity_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, entity_length, hidden_size)`):
            Sequence of entity hidden-states at the output of the last layer of the model.
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        entity_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output
            of each layer plus the initial entity embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    entity_last_hidden_state: torch.FloatTensor = None
    entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class EntityClassificationOutput(ModelOutput):
    """
    Outputs of entity classification models.

    Args:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Classification loss.
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
            Classification scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of
            each layer plus the initial embedding outputs.
        entity_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output
            of each layer plus the initial entity embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the self-attention heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class EntityPairClassificationOutput(ModelOutput):
    """
    Outputs of entity pair classification models.

    Args:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Classification loss.
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
            Classification scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of
            each layer plus the initial embedding outputs.
        entity_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output
            of each layer plus the initial entity embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the self-attention heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class EntitySpanClassificationOutput(ModelOutput):
    """
    Outputs of entity span classification models.

    Args:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Classification loss.
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
            Classification scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of
            each layer plus the initial embedding outputs.
        entity_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output
            of each layer plus the initial entity embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
            sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the
            weighted average in the self-attention heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


class LukeEmbeddings(nn.Module):
    """
    Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
    """

    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        # End copy
        self.padding_idx = config.pad_token_id
        self.position_embeddings = nn.Embedding(
            config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
        )

    def forward(
        self,
        input_ids=None,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
    ):
        if position_ids is None:
            if input_ids is not None:
                # Create the position ids from the input token ids. Any padded tokens remain padded.
                position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx).to(input_ids.device)
            else:
                position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)

        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)

        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings

    def create_position_ids_from_inputs_embeds(self, inputs_embeds):
        """
        We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.

        Args:
            inputs_embeds: torch.Tensor

        Returns: torch.Tensor
        """
        input_shape = inputs_embeds.size()[:-1]
        sequence_length = input_shape[1]

        position_ids = torch.arange(
            self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
        )
        return position_ids.unsqueeze(0).expand(input_shape)


class LukeEntityEmbeddings(nn.Module):
    def __init__(self, config: LukeConfig):
        super().__init__()
        self.config = config

        self.entity_embeddings = nn.Embedding(config.entity_vocab_size, config.entity_emb_size, padding_idx=0)
        if config.entity_emb_size != config.hidden_size:
            self.entity_embedding_dense = nn.Linear(config.entity_emb_size, config.hidden_size, bias=False)

        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(
        self, entity_ids: torch.LongTensor, position_ids: torch.LongTensor, token_type_ids: torch.LongTensor = None
    ):
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(entity_ids)

        entity_embeddings = self.entity_embeddings(entity_ids)
        if self.config.entity_emb_size != self.config.hidden_size:
            entity_embeddings = self.entity_embedding_dense(entity_embeddings)

        position_embeddings = self.position_embeddings(position_ids.clamp(min=0))
        position_embedding_mask = (position_ids != -1).type_as(position_embeddings).unsqueeze(-1)
        position_embeddings = position_embeddings * position_embedding_mask
        position_embeddings = torch.sum(position_embeddings, dim=-2)
        position_embeddings = position_embeddings / position_embedding_mask.sum(dim=-2).clamp(min=1e-7)

        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = entity_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)

        return embeddings


class LukeSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
                f"heads {config.num_attention_heads}."
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size
        self.use_entity_aware_attention = config.use_entity_aware_attention

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        if self.use_entity_aware_attention:
            self.w2e_query = nn.Linear(config.hidden_size, self.all_head_size)
            self.e2w_query = nn.Linear(config.hidden_size, self.all_head_size)
            self.e2e_query = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        word_hidden_states,
        entity_hidden_states,
        attention_mask=None,
        head_mask=None,
        output_attentions=False,
    ):
        word_size = word_hidden_states.size(1)

        if entity_hidden_states is None:
            concat_hidden_states = word_hidden_states
        else:
            concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1)

        key_layer = self.transpose_for_scores(self.key(concat_hidden_states))
        value_layer = self.transpose_for_scores(self.value(concat_hidden_states))

        if self.use_entity_aware_attention and entity_hidden_states is not None:
            # compute query vectors using word-word (w2w), word-entity (w2e), entity-word (e2w), entity-entity (e2e)
            # query layers
            w2w_query_layer = self.transpose_for_scores(self.query(word_hidden_states))
            w2e_query_layer = self.transpose_for_scores(self.w2e_query(word_hidden_states))
            e2w_query_layer = self.transpose_for_scores(self.e2w_query(entity_hidden_states))
            e2e_query_layer = self.transpose_for_scores(self.e2e_query(entity_hidden_states))

            # compute w2w, w2e, e2w, and e2e key vectors used with the query vectors computed above
            w2w_key_layer = key_layer[:, :, :word_size, :]
            e2w_key_layer = key_layer[:, :, :word_size, :]
            w2e_key_layer = key_layer[:, :, word_size:, :]
            e2e_key_layer = key_layer[:, :, word_size:, :]

            # compute attention scores based on the dot product between the query and key vectors
            w2w_attention_scores = torch.matmul(w2w_query_layer, w2w_key_layer.transpose(-1, -2))
            w2e_attention_scores = torch.matmul(w2e_query_layer, w2e_key_layer.transpose(-1, -2))
            e2w_attention_scores = torch.matmul(e2w_query_layer, e2w_key_layer.transpose(-1, -2))
            e2e_attention_scores = torch.matmul(e2e_query_layer, e2e_key_layer.transpose(-1, -2))

            # combine attention scores to create the final attention score matrix
            word_attention_scores = torch.cat([w2w_attention_scores, w2e_attention_scores], dim=3)
            entity_attention_scores = torch.cat([e2w_attention_scores, e2e_attention_scores], dim=3)
            attention_scores = torch.cat([word_attention_scores, entity_attention_scores], dim=2)

        else:
            query_layer = self.transpose_for_scores(self.query(concat_hidden_states))
            attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in LukeModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        output_word_hidden_states = context_layer[:, :word_size, :]
        if entity_hidden_states is None:
            output_entity_hidden_states = None
        else:
            output_entity_hidden_states = context_layer[:, word_size:, :]

        if output_attentions:
            outputs = (output_word_hidden_states, output_entity_hidden_states, attention_probs)
        else:
            outputs = (output_word_hidden_states, output_entity_hidden_states)

        return outputs


# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class LukeSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class LukeAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = LukeSelfAttention(config)
        self.output = LukeSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        raise NotImplementedError("LUKE does not support the pruning of attention heads")

    def forward(
        self,
        word_hidden_states,
        entity_hidden_states,
        attention_mask=None,
        head_mask=None,
        output_attentions=False,
    ):
        word_size = word_hidden_states.size(1)
        self_outputs = self.self(
            word_hidden_states,
            entity_hidden_states,
            attention_mask,
            head_mask,
            output_attentions,
        )
        if entity_hidden_states is None:
            concat_self_outputs = self_outputs[0]
            concat_hidden_states = word_hidden_states
        else:
            concat_self_outputs = torch.cat(self_outputs[:2], dim=1)
            concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1)

        attention_output = self.output(concat_self_outputs, concat_hidden_states)

        word_attention_output = attention_output[:, :word_size, :]
        if entity_hidden_states is None:
            entity_attention_output = None
        else:
            entity_attention_output = attention_output[:, word_size:, :]

        # add attentions if we output them
        outputs = (word_attention_output, entity_attention_output) + self_outputs[2:]

        return outputs


# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class LukeIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


# Copied from transformers.models.bert.modeling_bert.BertOutput
class LukeOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class LukeLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = LukeAttention(config)
        self.intermediate = LukeIntermediate(config)
        self.output = LukeOutput(config)

    def forward(
        self,
        word_hidden_states,
        entity_hidden_states,
        attention_mask=None,
        head_mask=None,
        output_attentions=False,
    ):
        word_size = word_hidden_states.size(1)

        self_attention_outputs = self.attention(
            word_hidden_states,
            entity_hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
        )
        if entity_hidden_states is None:
            concat_attention_output = self_attention_outputs[0]
        else:
            concat_attention_output = torch.cat(self_attention_outputs[:2], dim=1)

        outputs = self_attention_outputs[2:]  # add self attentions if we output attention weights

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, concat_attention_output
        )
        word_layer_output = layer_output[:, :word_size, :]
        if entity_hidden_states is None:
            entity_layer_output = None
        else:
            entity_layer_output = layer_output[:, word_size:, :]

        outputs = (word_layer_output, entity_layer_output) + outputs

        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


class LukeEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([LukeLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(
        self,
        word_hidden_states,
        entity_hidden_states,
        attention_mask=None,
        head_mask=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
    ):
        all_word_hidden_states = () if output_hidden_states else None
        all_entity_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_word_hidden_states = all_word_hidden_states + (word_hidden_states,)
                all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None
            if getattr(self.config, "gradient_checkpointing", False):

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    word_hidden_states,
                    entity_hidden_states,
                    attention_mask,
                    layer_head_mask,
                )
            else:
                layer_outputs = layer_module(
                    word_hidden_states,
                    entity_hidden_states,
                    attention_mask,
                    layer_head_mask,
                    output_attentions,
                )

            word_hidden_states = layer_outputs[0]

            if entity_hidden_states is not None:
                entity_hidden_states = layer_outputs[1]

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[2],)

        if output_hidden_states:
            all_word_hidden_states = all_word_hidden_states + (word_hidden_states,)
            all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    word_hidden_states,
                    all_word_hidden_states,
                    all_self_attentions,
                    entity_hidden_states,
                    all_entity_hidden_states,
                ]
                if v is not None
            )
        return BaseLukeModelOutput(
            last_hidden_state=word_hidden_states,
            hidden_states=all_word_hidden_states,
            attentions=all_self_attentions,
            entity_last_hidden_state=entity_hidden_states,
            entity_hidden_states=all_entity_hidden_states,
        )


# Copied from transformers.models.bert.modeling_bert.BertPooler
class LukePooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class LukePreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = LukeConfig
    base_model_prefix = "luke"

    def _init_weights(self, module: nn.Module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            if module.embedding_dim == 1:  # embedding for bias parameters
                module.weight.data.zero_()
            else:
                module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


LUKE_START_DOCSTRING = r"""

    This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
    methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
    pruning heads etc.)

    This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
    subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
    general usage and behavior.

    Parameters:
        config (:class:`~transformers.LukeConfig`): Model configuration class with all the parameters of the
            model. Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
            weights.
"""

LUKE_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`~transformers.LukeTokenizer`. See
            :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
            details.

            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            `What are attention masks? <../glossary.html#attention-mask>`__
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
            1]``:

            - 0 corresponds to a `sentence A` token,
            - 1 corresponds to a `sentence B` token.

            `What are token type IDs? <../glossary.html#token-type-ids>`_
        position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
            config.max_position_embeddings - 1]``.

            `What are position IDs? <../glossary.html#position-ids>`_

        entity_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, entity_length)`):
            Indices of entity tokens in the entity vocabulary.

            Indices can be obtained using :class:`~transformers.LukeTokenizer`. See
            :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
            details.

        entity_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, entity_length)`, `optional`):
            Mask to avoid performing attention on padding entity token indices. Mask values selected in ``[0, 1]``:

            - 1 for entity tokens that are **not masked**,
            - 0 for entity tokens that are **masked**.

        entity_token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, entity_length)`, `optional`):
            Segment token indices to indicate first and second portions of the entity token inputs. Indices are
            selected in ``[0, 1]``:

            - 0 corresponds to a `portion A` entity token,
            - 1 corresponds to a `portion B` entity token.

        entity_position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, entity_length, max_mention_length)`, `optional`):
            Indices of positions of each input entity in the position embeddings. Selected in the range ``[0,
            config.max_position_embeddings - 1]``.

        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
            vectors than the model's internal embedding lookup matrix.

        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        output_attentions (:obj:`bool`, `optional`):
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`):
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
        return_dict (:obj:`bool`, `optional`):
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare LUKE model transformer outputting raw hidden-states for both word tokens and entities without any specific head on top.",
    LUKE_START_DOCSTRING,
)
class LukeModel(LukePreTrainedModel):

    _keys_to_ignore_on_load_missing = [r"position_ids"]

    def __init__(self, config, add_pooling_layer=True):
        super().__init__(config)
        self.config = config

        self.embeddings = LukeEmbeddings(config)
        self.entity_embeddings = LukeEntityEmbeddings(config)
        self.encoder = LukeEncoder(config)

        self.pooler = LukePooler(config) if add_pooling_layer else None

        self.init_weights()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def get_entity_embeddings(self):
        return self.entity_embeddings.entity_embeddings

    def set_entity_embeddings(self, value):
        self.entity_embeddings.entity_embeddings = value

    def _prune_heads(self, heads_to_prune):
        raise NotImplementedError("LUKE does not support the pruning of attention heads")

    @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=BaseLukeModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        entity_ids=None,
        entity_attention_mask=None,
        entity_token_type_ids=None,
        entity_position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""

        Returns:

        Examples::

            >>> from transformers import LukeTokenizer, LukeModel

            >>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base")
            >>> model = LukeModel.from_pretrained("studio-ousia/luke-base")

            # Compute the contextualized entity representation corresponding to the entity mention "Beyoncé"
            >>> text = "Beyoncé lives in Los Angeles."
            >>> entity_spans = [(0, 7)]  # character-based entity span corresponding to "Beyoncé"

            >>> encoding = tokenizer(text, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt")
            >>> outputs = model(**encoding)
            >>> word_last_hidden_state = outputs.last_hidden_state
            >>> entity_last_hidden_state = outputs.entity_last_hidden_state

            # Input Wikipedia entities to obtain enriched contextualized representations of word tokens
            >>> text = "Beyoncé lives in Los Angeles."
            >>> entities = ["Beyoncé", "Los Angeles"]  # Wikipedia entity titles corresponding to the entity mentions "Beyoncé" and "Los Angeles"
            >>> entity_spans = [(0, 7), (17, 28)]  # character-based entity spans corresponding to "Beyoncé" and "Los Angeles"

            >>> encoding = tokenizer(text, entities=entities, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt")
            >>> outputs = model(**encoding)
            >>> word_last_hidden_state = outputs.last_hidden_state
            >>> entity_last_hidden_state = outputs.entity_last_hidden_state
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
            batch_size, seq_length = input_shape
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size, seq_length = input_shape
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones((batch_size, seq_length), device=device)
        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
        if entity_ids is not None:
            entity_seq_length = entity_ids.size(1)
            if entity_attention_mask is None:
                entity_attention_mask = torch.ones((batch_size, entity_seq_length), device=device)
            if entity_token_type_ids is None:
                entity_token_type_ids = torch.zeros((batch_size, entity_seq_length), dtype=torch.long, device=device)

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        # First, compute word embeddings
        word_embedding_output = self.embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
        )

        # Second, compute extended attention mask
        extended_attention_mask = self.get_extended_attention_mask(attention_mask, entity_attention_mask)

        # Third, compute entity embeddings and concatenate with word embeddings
        if entity_ids is None:
            entity_embedding_output = None
        else:
            entity_embedding_output = self.entity_embeddings(entity_ids, entity_position_ids, entity_token_type_ids)

        # Fourth, send embeddings through the model
        encoder_outputs = self.encoder(
            word_embedding_output,
            entity_embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        # Fifth, get the output. LukeModel outputs the same as BertModel, namely sequence_output of shape (batch_size, seq_len, hidden_size)
        sequence_output = encoder_outputs[0]

        # Sixth, we compute the pooled_output, word_sequence_output and entity_sequence_output based on the sequence_output
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BaseLukeModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            entity_last_hidden_state=encoder_outputs.entity_last_hidden_state,
            entity_hidden_states=encoder_outputs.entity_hidden_states,
        )

    def get_extended_attention_mask(
        self, word_attention_mask: torch.LongTensor, entity_attention_mask: Optional[torch.LongTensor]
    ):
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.

        Arguments:
            word_attention_mask (:obj:`torch.LongTensor`):
                Attention mask for word tokens with ones indicating tokens to attend to, zeros for tokens to ignore.
            entity_attention_mask (:obj:`torch.LongTensor`, `optional`):
                Attention mask for entity tokens with ones indicating tokens to attend to, zeros for tokens to ignore.

        Returns:
            :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
        """
        attention_mask = word_attention_mask
        if entity_attention_mask is not None:
            attention_mask = torch.cat([attention_mask, entity_attention_mask], dim=-1)

        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(f"Wrong shape for attention_mask (shape {attention_mask.shape})")

        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
        return extended_attention_mask


def create_position_ids_from_input_ids(input_ids, padding_idx):
    """
    Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
    are ignored. This is modified from fairseq's `utils.make_positions`.

    Args:
        x: torch.Tensor x:

    Returns: torch.Tensor
    """
    # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
    mask = input_ids.ne(padding_idx).int()
    incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask
    return incremental_indices.long() + padding_idx


@add_start_docstrings(
    """
    The LUKE model with a classification head on top (a linear layer on top of the hidden state of the first entity
    token) for entity classification tasks, such as Open Entity.
    """,
    LUKE_START_DOCSTRING,
)
class LukeForEntityClassification(LukePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.luke = LukeModel(config)

        self.num_labels = config.num_labels
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

    @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=EntityClassificationOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        entity_ids=None,
        entity_attention_mask=None,
        entity_token_type_ids=None,
        entity_position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)` or :obj:`(batch_size, num_labels)`, `optional`):
            Labels for computing the classification loss. If the shape is :obj:`(batch_size,)`, the cross entropy loss
            is used for the single-label classification. In this case, labels should contain the indices that should be
            in :obj:`[0, ..., config.num_labels - 1]`. If the shape is :obj:`(batch_size, num_labels)`, the binary
            cross entropy loss is used for the multi-label classification. In this case, labels should only contain
            ``[0, 1]``, where 0 and 1 indicate false and true, respectively.

        Returns:

        Examples::

            >>> from transformers import LukeTokenizer, LukeForEntityClassification

            >>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-open-entity")
            >>> model = LukeForEntityClassification.from_pretrained("studio-ousia/luke-large-finetuned-open-entity")

            >>> text = "Beyoncé lives in Los Angeles."
            >>> entity_spans = [(0, 7)]  # character-based entity span corresponding to "Beyoncé"
            >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt")
            >>> outputs = model(**inputs)
            >>> logits = outputs.logits
            >>> predicted_class_idx = logits.argmax(-1).item()
            >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
            Predicted class: person
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.luke(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            entity_ids=entity_ids,
            entity_attention_mask=entity_attention_mask,
            entity_token_type_ids=entity_token_type_ids,
            entity_position_ids=entity_position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=True,
        )

        feature_vector = outputs.entity_last_hidden_state[:, 0, :]
        feature_vector = self.dropout(feature_vector)
        logits = self.classifier(feature_vector)

        loss = None
        if labels is not None:
            # When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary
            # cross entropy is used otherwise.
            if labels.ndim == 1:
                loss = nn.functional.cross_entropy(logits, labels)
            else:
                loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits))

        if not return_dict:
            output = (
                logits,
                outputs.hidden_states,
                outputs.entity_hidden_states,
                outputs.attentions,
            )
            return ((loss,) + output) if loss is not None else output

        return EntityClassificationOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            entity_hidden_states=outputs.entity_hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    The LUKE model with a classification head on top (a linear layer on top of the hidden states of the two entity
    tokens) for entity pair classification tasks, such as TACRED.
    """,
    LUKE_START_DOCSTRING,
)
class LukeForEntityPairClassification(LukePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.luke = LukeModel(config)

        self.num_labels = config.num_labels
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size * 2, config.num_labels, False)

        self.init_weights()

    @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=EntityPairClassificationOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        entity_ids=None,
        entity_attention_mask=None,
        entity_token_type_ids=None,
        entity_position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)` or :obj:`(batch_size, num_labels)`, `optional`):
            Labels for computing the classification loss. If the shape is :obj:`(batch_size,)`, the cross entropy loss
            is used for the single-label classification. In this case, labels should contain the indices that should be
            in :obj:`[0, ..., config.num_labels - 1]`. If the shape is :obj:`(batch_size, num_labels)`, the binary
            cross entropy loss is used for the multi-label classification. In this case, labels should only contain
            ``[0, 1]``, where 0 and 1 indicate false and true, respectively.

        Returns:

        Examples::

            >>> from transformers import LukeTokenizer, LukeForEntityPairClassification

            >>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-tacred")
            >>> model = LukeForEntityPairClassification.from_pretrained("studio-ousia/luke-large-finetuned-tacred")

            >>> text = "Beyoncé lives in Los Angeles."
            >>> entity_spans = [(0, 7), (17, 28)]  # character-based entity spans corresponding to "Beyoncé" and "Los Angeles"
            >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt")
            >>> outputs = model(**inputs)
            >>> logits = outputs.logits
            >>> predicted_class_idx = logits.argmax(-1).item()
            >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
            Predicted class: per:cities_of_residence
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.luke(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            entity_ids=entity_ids,
            entity_attention_mask=entity_attention_mask,
            entity_token_type_ids=entity_token_type_ids,
            entity_position_ids=entity_position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=True,
        )

        feature_vector = torch.cat(
            [outputs.entity_last_hidden_state[:, 0, :], outputs.entity_last_hidden_state[:, 1, :]], dim=1
        )
        feature_vector = self.dropout(feature_vector)
        logits = self.classifier(feature_vector)

        loss = None
        if labels is not None:
            # When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary
            # cross entropy is used otherwise.
            if labels.ndim == 1:
                loss = nn.functional.cross_entropy(logits, labels)
            else:
                loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits))

        if not return_dict:
            output = (
                logits,
                outputs.hidden_states,
                outputs.entity_hidden_states,
                outputs.attentions,
            )
            return ((loss,) + output) if loss is not None else output

        return EntityPairClassificationOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            entity_hidden_states=outputs.entity_hidden_states,
            attentions=outputs.attentions,
        )


@add_start_docstrings(
    """
    The LUKE model with a span classification head on top (a linear layer on top of the hidden states output) for tasks
    such as named entity recognition.
    """,
    LUKE_START_DOCSTRING,
)
class LukeForEntitySpanClassification(LukePreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.luke = LukeModel(config)

        self.num_labels = config.num_labels
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels)

        self.init_weights()

    @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=EntitySpanClassificationOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        entity_ids=None,
        entity_attention_mask=None,
        entity_token_type_ids=None,
        entity_position_ids=None,
        entity_start_positions=None,
        entity_end_positions=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        entity_start_positions (:obj:`torch.LongTensor`):
            The start positions of entities in the word token sequence.

        entity_end_positions (:obj:`torch.LongTensor`):
            The end positions of entities in the word token sequence.

        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, entity_length)` or :obj:`(batch_size, entity_length, num_labels)`, `optional`):
            Labels for computing the classification loss. If the shape is :obj:`(batch_size, entity_length)`, the cross
            entropy loss is used for the single-label classification. In this case, labels should contain the indices
            that should be in :obj:`[0, ..., config.num_labels - 1]`. If the shape is :obj:`(batch_size, entity_length,
            num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case,
            labels should only contain ``[0, 1]``, where 0 and 1 indicate false and true, respectively.

        Returns:

        Examples::

            >>> from transformers import LukeTokenizer, LukeForEntitySpanClassification

            >>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003")
            >>> model = LukeForEntitySpanClassification.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003")

            >>> text = "Beyoncé lives in Los Angeles"

            # List all possible entity spans in the text
            >>> word_start_positions = [0, 8, 14, 17, 21]  # character-based start positions of word tokens
            >>> word_end_positions = [7, 13, 16, 20, 28]  # character-based end positions of word tokens
            >>> entity_spans = []
            >>> for i, start_pos in enumerate(word_start_positions):
            ...     for end_pos in word_end_positions[i:]:
            ...         entity_spans.append((start_pos, end_pos))

            >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt")
            >>> outputs = model(**inputs)
            >>> logits = outputs.logits
            >>> predicted_class_indices = logits.argmax(-1).squeeze().tolist()
            >>> for span, predicted_class_idx in zip(entity_spans, predicted_class_indices):
            ...     if predicted_class_idx != 0:
            ...        print(text[span[0]:span[1]], model.config.id2label[predicted_class_idx])
            Beyoncé PER
            Los Angeles LOC
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.luke(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            entity_ids=entity_ids,
            entity_attention_mask=entity_attention_mask,
            entity_token_type_ids=entity_token_type_ids,
            entity_position_ids=entity_position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=True,
        )
        hidden_size = outputs.last_hidden_state.size(-1)

        entity_start_positions = entity_start_positions.unsqueeze(-1).expand(-1, -1, hidden_size)
        start_states = torch.gather(outputs.last_hidden_state, -2, entity_start_positions)
        entity_end_positions = entity_end_positions.unsqueeze(-1).expand(-1, -1, hidden_size)
        end_states = torch.gather(outputs.last_hidden_state, -2, entity_end_positions)
        feature_vector = torch.cat([start_states, end_states, outputs.entity_last_hidden_state], dim=2)

        feature_vector = self.dropout(feature_vector)
        logits = self.classifier(feature_vector)

        loss = None
        if labels is not None:
            # When the number of dimension of `labels` is 2, cross entropy is used as the loss function. The binary
            # cross entropy is used otherwise.
            if labels.ndim == 2:
                loss = nn.functional.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
            else:
                loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits))

        if not return_dict:
            output = (
                logits,
                outputs.hidden_states,
                outputs.entity_hidden_states,
                outputs.attentions,
            )
            return ((loss,) + output) if loss is not None else output

        return EntitySpanClassificationOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            entity_hidden_states=outputs.entity_hidden_states,
            attentions=outputs.attentions,
        )