File size: 6,702 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# coding=utf-8
# Copyright Studio Ousia and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" LUKE configuration """

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)

LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json",
    "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json",
}


class LukeConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a :class:`~transformers.LukeModel`. It is used to
    instantiate a LUKE model according to the specified arguments, defining the model architecture.

    Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
    outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.


    Args:
        vocab_size (:obj:`int`, `optional`, defaults to 30522):
            Vocabulary size of the LUKE model. Defines the number of different tokens that can be represented by the
            :obj:`inputs_ids` passed when calling :class:`~transformers.LukeModel`.
        entity_vocab_size (:obj:`int`, `optional`, defaults to 500000):
            Entity vocabulary size of the LUKE model. Defines the number of different entities that can be represented
            by the :obj:`entity_ids` passed when calling :class:`~transformers.LukeModel`.
        hidden_size (:obj:`int`, `optional`, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        entity_emb_size (:obj:`int`, `optional`, defaults to 256):
            The number of dimensions of the entity embedding.
        num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (:obj:`int`, `optional`, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (:obj:`int`, `optional`, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string,
            :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
        hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (:obj:`int`, `optional`, defaults to 2):
            The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.LukeModel`.
        initializer_range (:obj:`float`, `optional`, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
            If True, use gradient checkpointing to save memory at the expense of slower backward pass.
        use_entity_aware_attention (:obj:`bool`, defaults to :obj:`True`):
            Whether or not the model should use the entity-aware self-attention mechanism proposed in `LUKE: Deep
            Contextualized Entity Representations with Entity-aware Self-attention (Yamada et al.)
            <https://arxiv.org/abs/2010.01057>`__.

    Examples::

        >>> from transformers import LukeConfig, LukeModel

        >>> # Initializing a LUKE configuration
        >>> configuration = LukeConfig()

        >>> # Initializing a model from the configuration
        >>> model = LukeModel(configuration)

        >>> # Accessing the model configuration
        >>> configuration = model.config
    """
    model_type = "luke"

    def __init__(
        self,
        vocab_size=50267,
        entity_vocab_size=500000,
        hidden_size=768,
        entity_emb_size=256,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=2,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        gradient_checkpointing=False,
        use_entity_aware_attention=True,
        pad_token_id=1,
        bos_token_id=0,
        eos_token_id=2,
        **kwargs
    ):
        """Constructs LukeConfig."""
        super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)

        self.vocab_size = vocab_size
        self.entity_vocab_size = entity_vocab_size
        self.hidden_size = hidden_size
        self.entity_emb_size = entity_emb_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.gradient_checkpointing = gradient_checkpointing
        self.use_entity_aware_attention = use_entity_aware_attention