Spaces:
Sleeping
Sleeping
File size: 120,358 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 |
# coding=utf-8
# Copyright 2021 Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 LED model. """
import random
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...file_utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_tf_outputs import TFBaseModelOutputWithPast
# Public API
from ...modeling_tf_utils import (
TFPreTrainedModel,
TFSharedEmbeddings,
TFWrappedEmbeddings,
get_initializer,
input_processing,
keras_serializable,
shape_list,
)
from ...utils import logging
from .configuration_led import LEDConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "allenai/led-base-16384"
_CONFIG_FOR_DOC = "LEDConfig"
_TOKENIZER_FOR_DOC = "LEDTokenizer"
LARGE_NEGATIVE = -1e8
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id)
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = tf.where(
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
)
# "Verify that `labels` has only positive values and -100"
if tf.executing_eagerly():
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0))
# Make sure the assertion op is called by wrapping the result in an identity no-op
with tf.control_dependencies([assert_gte0]):
shifted_input_ids = tf.identity(shifted_input_ids)
return shifted_input_ids
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
mask_cond = tf.range(shape_list(mask)[-1])
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
if past_key_values_length > 0:
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None, past_key_values_length: int = 0):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
class TFLEDLearnedPositionalEmbedding(TFSharedEmbeddings):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
super().__init__(num_embeddings, embedding_dim, **kwargs)
def call(self, input_shape: tf.TensorShape, past_key_values_length: int = 0):
"""Input is expected to be of size [bsz x seqlen]."""
bsz, seq_len = input_shape[:2]
positions = tf.range(past_key_values_length, seq_len + past_key_values_length, delta=1, name="range")
return super().call(positions)
# Copied from transformers.models.longformer.modeling_tf_longformer.TFLongformerSelfAttention with TFLongformer->TFLEDEncoder
class TFLEDEncoderSelfAttention(tf.keras.layers.Layer):
def __init__(self, config, layer_id, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads}"
)
self.num_heads = config.num_attention_heads
self.head_dim = int(config.hidden_size / config.num_attention_heads)
self.embed_dim = config.hidden_size
self.query = tf.keras.layers.Dense(
self.embed_dim,
kernel_initializer=get_initializer(config.initializer_range),
name="query",
)
self.key = tf.keras.layers.Dense(
self.embed_dim,
kernel_initializer=get_initializer(config.initializer_range),
name="key",
)
self.value = tf.keras.layers.Dense(
self.embed_dim,
kernel_initializer=get_initializer(config.initializer_range),
name="value",
)
# separate projection layers for tokens with global attention
self.query_global = tf.keras.layers.Dense(
self.embed_dim,
kernel_initializer=get_initializer(config.initializer_range),
name="query_global",
)
self.key_global = tf.keras.layers.Dense(
self.embed_dim,
kernel_initializer=get_initializer(config.initializer_range),
name="key_global",
)
self.value_global = tf.keras.layers.Dense(
self.embed_dim,
kernel_initializer=get_initializer(config.initializer_range),
name="value_global",
)
self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob)
self.global_dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob)
self.layer_id = layer_id
attention_window = config.attention_window[self.layer_id]
assert (
attention_window % 2 == 0
), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
assert (
attention_window > 0
), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"
self.one_sided_attn_window_size = attention_window // 2
def call(
self,
inputs,
training=False,
):
"""
LongformerSelfAttention expects `len(hidden_states)` to be multiple of `attention_window`. Padding to
`attention_window` happens in LongformerModel.forward to avoid redoing the padding on each layer.
The `attention_mask` is changed in :meth:`LongformerModel.forward` from 0, 1, 2 to:
* -10000: no attention
* 0: local attention
* +10000: global attention
"""
# retrieve input args
(
hidden_states,
attention_mask,
layer_head_mask,
is_index_masked,
is_index_global_attn,
is_global_attn,
) = inputs
# project hidden states
query_vectors = self.query(hidden_states)
key_vectors = self.key(hidden_states)
value_vectors = self.value(hidden_states)
batch_size, seq_len, embed_dim = shape_list(hidden_states)
if tf.executing_eagerly():
tf.debugging.assert_equal(
embed_dim,
self.embed_dim,
message=f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}",
)
# normalize query
query_vectors /= tf.math.sqrt(tf.cast(self.head_dim, dtype=query_vectors.dtype))
query_vectors = tf.reshape(query_vectors, (batch_size, seq_len, self.num_heads, self.head_dim))
key_vectors = tf.reshape(key_vectors, (batch_size, seq_len, self.num_heads, self.head_dim))
# attn_probs = (batch_size, seq_len, num_heads, window*2+1)
attn_scores = self._sliding_chunks_query_key_matmul(
query_vectors, key_vectors, self.one_sided_attn_window_size
)
# diagonal mask with zeros everywhere and -inf inplace of padding
diagonal_mask = self._sliding_chunks_query_key_matmul(
tf.ones(shape_list(attention_mask)),
attention_mask,
self.one_sided_attn_window_size,
)
# pad local attention probs
attn_scores += diagonal_mask
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(attn_scores),
[batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1],
message=f"attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads}, {self.one_sided_attn_window_size * 2 + 1}), but is of size {shape_list(attn_scores)}",
)
# compute global attn indices required through out forward fn
(
max_num_global_attn_indices,
is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero,
) = self._get_global_attn_indices(is_index_global_attn)
# this function is only relevant for global attention
attn_scores = tf.cond(
is_global_attn,
lambda: self._concat_with_global_key_attn_probs(
attn_scores=attn_scores,
query_vectors=query_vectors,
key_vectors=key_vectors,
max_num_global_attn_indices=max_num_global_attn_indices,
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
),
lambda: attn_scores,
)
attn_probs = tf.nn.softmax(attn_scores, axis=-1)
# softmax sometimes inserts NaN if all positions are masked, replace them with 0
# Make sure to create a mask with the proper shape:
# if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1]
# if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1]
masked_index = tf.cond(
is_global_attn,
lambda: tf.tile(
is_index_masked[:, :, None, None],
(1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1),
),
lambda: tf.tile(
is_index_masked[:, :, None, None],
(1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1),
),
)
attn_probs = tf.where(
masked_index,
tf.zeros(shape_list(masked_index), dtype=attn_probs.dtype),
attn_probs,
)
if layer_head_mask is not None:
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=f"Head mask for a single layer should be of size {(self.num_heads)}, but is {shape_list(layer_head_mask)}",
)
attn_probs = tf.reshape(layer_head_mask, (1, 1, -1, 1)) * attn_probs
# apply dropout
attn_probs = self.dropout(attn_probs, training=training)
value_vectors = tf.reshape(value_vectors, (batch_size, seq_len, self.num_heads, self.head_dim))
# if global attention, compute sum of global and local attn
attn_output = tf.cond(
is_global_attn,
lambda: self._compute_attn_output_with_global_indices(
value_vectors=value_vectors,
attn_probs=attn_probs,
max_num_global_attn_indices=max_num_global_attn_indices,
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
),
lambda: self._sliding_chunks_matmul_attn_probs_value(
attn_probs, value_vectors, self.one_sided_attn_window_size
),
)
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(attn_output),
[batch_size, seq_len, self.num_heads, self.head_dim],
message="Unexpected size",
)
attn_output = tf.reshape(attn_output, (batch_size, seq_len, embed_dim))
# compute value for global attention and overwrite to attention output
# TODO: remove the redundant computation
attn_output, global_attn_probs = tf.cond(
is_global_attn,
lambda: self._compute_global_attn_output_from_hidden(
attn_output=attn_output,
hidden_states=hidden_states,
max_num_global_attn_indices=max_num_global_attn_indices,
layer_head_mask=layer_head_mask,
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
is_index_masked=is_index_masked,
training=training,
),
lambda: (attn_output, tf.zeros((batch_size, self.num_heads, max_num_global_attn_indices, seq_len))),
)
# make sure that local attention probabilities are set to 0 for indices of global attn
# Make sure to create a mask with the proper shape:
# if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1]
# if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1]
masked_global_attn_index = tf.cond(
is_global_attn,
lambda: tf.tile(
is_index_global_attn[:, :, None, None],
(1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1),
),
lambda: tf.tile(
is_index_global_attn[:, :, None, None],
(1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1),
),
)
attn_probs = tf.where(
masked_global_attn_index,
tf.zeros(shape_list(masked_global_attn_index), dtype=attn_probs.dtype),
attn_probs,
)
outputs = (attn_output, attn_probs, global_attn_probs)
return outputs
def _sliding_chunks_query_key_matmul(self, query, key, window_overlap):
"""
Matrix multiplication of query and key tensors using with a sliding window attention pattern. This
implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an
overlap of size window_overlap
"""
batch_size, seq_len, num_heads, head_dim = shape_list(query)
if tf.executing_eagerly():
tf.debugging.assert_equal(
seq_len % (window_overlap * 2),
0,
message=f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}",
)
tf.debugging.assert_equal(
shape_list(query),
shape_list(key),
message=f"Shape of query and key should be equal, but got query: {shape_list(query)} and key: {shape_list(key)}",
)
chunks_count = seq_len // window_overlap - 1
# group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2
query = tf.reshape(
tf.transpose(query, (0, 2, 1, 3)),
(batch_size * num_heads, seq_len, head_dim),
)
key = tf.reshape(tf.transpose(key, (0, 2, 1, 3)), (batch_size * num_heads, seq_len, head_dim))
chunked_query = self._chunk(query, window_overlap)
chunked_key = self._chunk(key, window_overlap)
# matrix multiplication
# bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim
# bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim
# bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap
chunked_query = tf.cast(chunked_query, dtype=chunked_key.dtype)
chunked_attention_scores = tf.einsum("bcxd,bcyd->bcxy", chunked_query, chunked_key) # multiply
# convert diagonals into columns
paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 1], [0, 0]])
diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims(chunked_attention_scores, paddings)
# allocate space for the overall attention matrix where the chunks are combined. The last dimension
# has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to
# window_overlap previous words). The following column is attention score from each word to itself, then
# followed by window_overlap columns for the upper triangle.
# copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions
# - copying the main diagonal and the upper triangle
# TODO: This code is most likely not very efficient and should be improved
diagonal_attn_scores_up_triang = tf.concat(
[
diagonal_chunked_attention_scores[:, :, :window_overlap, : window_overlap + 1],
diagonal_chunked_attention_scores[:, -1:, window_overlap:, : window_overlap + 1],
],
axis=1,
)
# - copying the lower triangle
diagonal_attn_scores_low_triang = tf.concat(
[
tf.zeros(
(batch_size * num_heads, 1, window_overlap, window_overlap),
dtype=diagonal_chunked_attention_scores.dtype,
),
diagonal_chunked_attention_scores[:, :, -(window_overlap + 1) : -1, window_overlap + 1 :],
],
axis=1,
)
diagonal_attn_scores_first_chunk = tf.concat(
[
tf.roll(
diagonal_chunked_attention_scores,
shift=[1, window_overlap],
axis=[2, 3],
)[:, :, :window_overlap, :window_overlap],
tf.zeros(
(batch_size * num_heads, 1, window_overlap, window_overlap),
dtype=diagonal_chunked_attention_scores.dtype,
),
],
axis=1,
)
first_chunk_mask = (
tf.tile(
tf.range(chunks_count + 1)[None, :, None, None],
(batch_size * num_heads, 1, window_overlap, window_overlap),
)
< 1
)
diagonal_attn_scores_low_triang = tf.where(
first_chunk_mask,
diagonal_attn_scores_first_chunk,
diagonal_attn_scores_low_triang,
)
# merging upper and lower triangle
diagonal_attention_scores = tf.concat(
[diagonal_attn_scores_low_triang, diagonal_attn_scores_up_triang], axis=-1
)
# separate batch_size and num_heads dimensions again
diagonal_attention_scores = tf.transpose(
tf.reshape(
diagonal_attention_scores,
(batch_size, num_heads, seq_len, 2 * window_overlap + 1),
),
(0, 2, 1, 3),
)
diagonal_attention_scores = self._mask_invalid_locations(diagonal_attention_scores, window_overlap)
return diagonal_attention_scores
@staticmethod
def _mask_invalid_locations(input_tensor, window_overlap):
# create correct upper triangle bool mask
mask_2d_upper = tf.reverse(
tf.linalg.band_part(tf.ones(shape=(window_overlap, window_overlap + 1)), -1, 0),
axis=[0],
)
# pad to full matrix
padding = tf.convert_to_tensor(
[[0, shape_list(input_tensor)[1] - window_overlap], [0, shape_list(input_tensor)[3] - window_overlap - 1]]
)
# create lower mask
mask_2d = tf.pad(mask_2d_upper, padding)
# combine with upper mask
mask_2d = mask_2d + tf.reverse(mask_2d, axis=[0, 1])
# broadcast to full matrix
mask_4d = tf.tile(mask_2d[None, :, None, :], (shape_list(input_tensor)[0], 1, 1, 1))
# inf tensor used for masking
inf_tensor = -float("inf") * tf.ones_like(input_tensor)
# mask
input_tensor = tf.where(tf.math.greater(mask_4d, 0), inf_tensor, input_tensor)
return input_tensor
def _sliding_chunks_matmul_attn_probs_value(self, attn_probs, value, window_overlap):
"""
Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the
same shape as `attn_probs`
"""
batch_size, seq_len, num_heads, head_dim = shape_list(value)
if tf.executing_eagerly():
tf.debugging.assert_equal(
seq_len % (window_overlap * 2),
0,
message="Seq_len has to be multiple of 2 * window_overlap",
)
tf.debugging.assert_equal(
shape_list(attn_probs)[:3],
shape_list(value)[:3],
message="value and attn_probs must have same dims (except head_dim)",
)
tf.debugging.assert_equal(
shape_list(attn_probs)[3],
2 * window_overlap + 1,
message="attn_probs last dim has to be 2 * window_overlap + 1",
)
chunks_count = seq_len // window_overlap - 1
# group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap
chunked_attn_probs = tf.reshape(
tf.transpose(attn_probs, (0, 2, 1, 3)),
(
batch_size * num_heads,
seq_len // window_overlap,
window_overlap,
2 * window_overlap + 1,
),
)
# group batch_size and num_heads dimensions into one
value = tf.reshape(
tf.transpose(value, (0, 2, 1, 3)),
(batch_size * num_heads, seq_len, head_dim),
)
# pad seq_len with w at the beginning of the sequence and another window overlap at the end
paddings = tf.convert_to_tensor([[0, 0], [window_overlap, window_overlap], [0, 0]])
padded_value = tf.pad(value, paddings, constant_values=-1)
# chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap
frame_size = 3 * window_overlap * head_dim
frame_hop_size = (shape_list(padded_value)[1] * head_dim - frame_size) // chunks_count
chunked_value = tf.signal.frame(
tf.reshape(padded_value, (batch_size * num_heads, -1)),
frame_size,
frame_hop_size,
)
chunked_value = tf.reshape(
chunked_value,
(batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim),
)
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(chunked_value),
[batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim],
message="Chunked value has the wrong shape",
)
chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs)
context = tf.einsum("bcwd,bcdh->bcwh", chunked_attn_probs, chunked_value)
context = tf.transpose(
tf.reshape(context, (batch_size, num_heads, seq_len, head_dim)),
(0, 2, 1, 3),
)
return context
@staticmethod
def _pad_and_transpose_last_two_dims(hidden_states_padded, paddings):
"""pads rows and then flips rows and columns"""
hidden_states_padded = tf.pad(
hidden_states_padded, paddings
) # padding value is not important because it will be overwritten
batch_size, chunk_size, seq_length, hidden_dim = shape_list(hidden_states_padded)
hidden_states_padded = tf.reshape(hidden_states_padded, (batch_size, chunk_size, hidden_dim, seq_length))
return hidden_states_padded
@staticmethod
def _pad_and_diagonalize(chunked_hidden_states):
"""
shift every row 1 step right, converting columns into diagonals.
Example::
chunked_hidden_states: [ 0.4983, 2.6918, -0.0071, 1.0492,
-1.8348, 0.7672, 0.2986, 0.0285,
-0.7584, 0.4206, -0.0405, 0.1599,
2.0514, -1.1600, 0.5372, 0.2629 ]
window_overlap = num_rows = 4
(pad & diagonalize) =>
[ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000
0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000
0.0000, 0.0000, -0.7584, 0.4206, -0.0405, 0.1599, 0.0000
0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ]
"""
total_num_heads, num_chunks, window_overlap, hidden_dim = shape_list(chunked_hidden_states)
paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 0], [0, window_overlap + 1]])
chunked_hidden_states = tf.pad(
chunked_hidden_states, paddings
) # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten
chunked_hidden_states = tf.reshape(
chunked_hidden_states, (total_num_heads, num_chunks, -1)
) # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap+window_overlap
chunked_hidden_states = chunked_hidden_states[
:, :, :-window_overlap
] # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap
chunked_hidden_states = tf.reshape(
chunked_hidden_states,
(total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim),
) # total_num_heads x num_chunks, window_overlap x hidden_dim+window_overlap
chunked_hidden_states = chunked_hidden_states[:, :, :, :-1]
return chunked_hidden_states
@staticmethod
def _chunk(hidden_states, window_overlap):
"""convert into overlapping chunks. Chunk size = 2w, overlap size = w"""
batch_size, seq_length, hidden_dim = shape_list(hidden_states)
num_output_chunks = 2 * (seq_length // (2 * window_overlap)) - 1
# define frame size and frame stride (similar to convolution)
frame_hop_size = window_overlap * hidden_dim
frame_size = 2 * frame_hop_size
hidden_states = tf.reshape(hidden_states, (batch_size, seq_length * hidden_dim))
# chunk with overlap
chunked_hidden_states = tf.signal.frame(hidden_states, frame_size, frame_hop_size)
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(chunked_hidden_states),
[batch_size, num_output_chunks, frame_size],
message=f"Make sure chunking is correctly applied. `Chunked hidden states should have output dimension {[batch_size, frame_size, num_output_chunks]}, but got {shape_list(chunked_hidden_states)}.",
)
chunked_hidden_states = tf.reshape(
chunked_hidden_states,
(batch_size, num_output_chunks, 2 * window_overlap, hidden_dim),
)
return chunked_hidden_states
@staticmethod
def _get_global_attn_indices(is_index_global_attn):
"""compute global attn indices required throughout forward pass"""
# helper variable
num_global_attn_indices = tf.math.count_nonzero(is_index_global_attn, axis=1)
num_global_attn_indices = tf.cast(num_global_attn_indices, dtype=tf.constant(1).dtype)
# max number of global attn indices in batch
max_num_global_attn_indices = tf.reduce_max(num_global_attn_indices)
# indices of global attn
is_index_global_attn_nonzero = tf.where(is_index_global_attn)
# helper variable
is_local_index_global_attn = tf.range(max_num_global_attn_indices) < tf.expand_dims(
num_global_attn_indices, axis=-1
)
# location of the non-padding values within global attention indices
is_local_index_global_attn_nonzero = tf.where(is_local_index_global_attn)
# location of the padding values within global attention indices
is_local_index_no_global_attn_nonzero = tf.where(tf.math.logical_not(is_local_index_global_attn))
return (
max_num_global_attn_indices,
is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero,
)
def _concat_with_global_key_attn_probs(
self,
attn_scores,
key_vectors,
query_vectors,
max_num_global_attn_indices,
is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero,
):
batch_size = shape_list(key_vectors)[0]
# select global key vectors
global_key_vectors = tf.gather_nd(key_vectors, is_index_global_attn_nonzero)
# create only global key vectors
key_vectors_only_global = tf.scatter_nd(
is_local_index_global_attn_nonzero,
global_key_vectors,
shape=(
batch_size,
max_num_global_attn_indices,
self.num_heads,
self.head_dim,
),
)
# (batch_size, seq_len, num_heads, max_num_global_attn_indices)
attn_probs_from_global_key = tf.einsum("blhd,bshd->blhs", query_vectors, key_vectors_only_global)
# (batch_size, max_num_global_attn_indices, seq_len, num_heads)
attn_probs_from_global_key_trans = tf.transpose(attn_probs_from_global_key, (0, 3, 1, 2))
mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple(
shape_list(attn_probs_from_global_key_trans)[-2:]
)
mask = tf.ones(mask_shape) * -10000.0
mask = tf.cast(mask, dtype=attn_probs_from_global_key_trans.dtype)
# scatter mask
attn_probs_from_global_key_trans = tf.tensor_scatter_nd_update(
attn_probs_from_global_key_trans,
is_local_index_no_global_attn_nonzero,
mask,
)
# (batch_size, seq_len, num_heads, max_num_global_attn_indices)
attn_probs_from_global_key = tf.transpose(attn_probs_from_global_key_trans, (0, 2, 3, 1))
# concat to attn_probs
# (batch_size, seq_len, num_heads, extra attention count + 2*window+1)
attn_scores = tf.concat((attn_probs_from_global_key, attn_scores), axis=-1)
return attn_scores
def _compute_attn_output_with_global_indices(
self,
value_vectors,
attn_probs,
max_num_global_attn_indices,
is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero,
):
batch_size = shape_list(attn_probs)[0]
# cut local attn probs to global only
attn_probs_only_global = attn_probs[:, :, :, :max_num_global_attn_indices]
# select global value vectors
global_value_vectors = tf.gather_nd(value_vectors, is_index_global_attn_nonzero)
# create only global value vectors
value_vectors_only_global = tf.scatter_nd(
is_local_index_global_attn_nonzero,
global_value_vectors,
shape=(
batch_size,
max_num_global_attn_indices,
self.num_heads,
self.head_dim,
),
)
# compute attn output only global
attn_output_only_global = tf.einsum("blhs,bshd->blhd", attn_probs_only_global, value_vectors_only_global)
# reshape attn probs
attn_probs_without_global = attn_probs[:, :, :, max_num_global_attn_indices:]
# compute attn output with global
attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value(
attn_probs_without_global, value_vectors, self.one_sided_attn_window_size
)
return attn_output_only_global + attn_output_without_global
def _compute_global_attn_output_from_hidden(
self,
attn_output,
hidden_states,
max_num_global_attn_indices,
layer_head_mask,
is_local_index_global_attn_nonzero,
is_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero,
is_index_masked,
training,
):
batch_size, seq_len = shape_list(hidden_states)[:2]
# prepare global hidden states
global_attn_hidden_states = tf.gather_nd(hidden_states, is_index_global_attn_nonzero)
global_attn_hidden_states = tf.scatter_nd(
is_local_index_global_attn_nonzero,
global_attn_hidden_states,
shape=(batch_size, max_num_global_attn_indices, self.embed_dim),
)
# global key, query, value
global_query_vectors_only_global = self.query_global(global_attn_hidden_states)
global_key_vectors = self.key_global(hidden_states)
global_value_vectors = self.value_global(hidden_states)
# normalize
global_query_vectors_only_global /= tf.math.sqrt(
tf.cast(self.head_dim, dtype=global_query_vectors_only_global.dtype)
)
global_query_vectors_only_global = self.reshape_and_transpose(global_query_vectors_only_global, batch_size)
global_key_vectors = self.reshape_and_transpose(global_key_vectors, batch_size)
global_value_vectors = self.reshape_and_transpose(global_value_vectors, batch_size)
# compute attn scores
global_attn_scores = tf.matmul(global_query_vectors_only_global, global_key_vectors, transpose_b=True)
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(global_attn_scores),
[batch_size * self.num_heads, max_num_global_attn_indices, seq_len],
message=f"global_attn_scores have the wrong size. Size should be {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is {shape_list(global_attn_scores)}.",
)
global_attn_scores = tf.reshape(
global_attn_scores,
(batch_size, self.num_heads, max_num_global_attn_indices, seq_len),
)
global_attn_scores_trans = tf.transpose(global_attn_scores, (0, 2, 1, 3))
mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple(
shape_list(global_attn_scores_trans)[-2:]
)
global_attn_mask = tf.ones(mask_shape) * -10000.0
global_attn_mask = tf.cast(global_attn_mask, dtype=global_attn_scores_trans.dtype)
# scatter mask
global_attn_scores_trans = tf.tensor_scatter_nd_update(
global_attn_scores_trans,
is_local_index_no_global_attn_nonzero,
global_attn_mask,
)
global_attn_scores = tf.transpose(global_attn_scores_trans, (0, 2, 1, 3))
# mask global attn scores
attn_mask = tf.tile(is_index_masked[:, None, None, :], (1, shape_list(global_attn_scores)[1], 1, 1))
global_attn_scores = tf.where(attn_mask, -10000.0, global_attn_scores)
global_attn_scores = tf.reshape(
global_attn_scores,
(batch_size * self.num_heads, max_num_global_attn_indices, seq_len),
)
# compute global attn probs
global_attn_probs_float = tf.nn.softmax(global_attn_scores, axis=-1)
# apply layer head masking
if layer_head_mask is not None:
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=f"Head mask for a single layer should be of size {(self.num_heads)}, but is {shape_list(layer_head_mask)}",
)
global_attn_probs_float = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
global_attn_probs_float, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len)
)
global_attn_probs_float = tf.reshape(
global_attn_probs_float, (batch_size * self.num_heads, max_num_global_attn_indices, seq_len)
)
# dropout
global_attn_probs = self.global_dropout(global_attn_probs_float, training=training)
# global attn output
global_attn_output = tf.matmul(global_attn_probs, global_value_vectors)
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(global_attn_output),
[batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim],
message=f"global_attn_output tensor has the wrong size. Size should be {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is {shape_list(global_attn_output)}.",
)
global_attn_output = tf.reshape(
global_attn_output,
(batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim),
)
# get only non zero global attn output
nonzero_global_attn_output = tf.gather_nd(
tf.transpose(global_attn_output, (0, 2, 1, 3)),
is_local_index_global_attn_nonzero,
)
nonzero_global_attn_output = tf.reshape(
nonzero_global_attn_output,
(shape_list(is_local_index_global_attn_nonzero)[0], -1),
)
# overwrite values with global attention
attn_output = tf.tensor_scatter_nd_update(
attn_output, is_index_global_attn_nonzero, nonzero_global_attn_output
)
global_attn_probs = tf.reshape(
global_attn_probs, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len)
)
return attn_output, global_attn_probs
def reshape_and_transpose(self, vector, batch_size):
return tf.reshape(
tf.transpose(
tf.reshape(vector, (batch_size, -1, self.num_heads, self.head_dim)),
(0, 2, 1, 3),
),
(batch_size * self.num_heads, -1, self.head_dim),
)
class TFLEDEncoderAttention(tf.keras.layers.Layer):
def __init__(self, config, layer_id, **kwargs):
super().__init__(**kwargs)
self.longformer_self_attn = TFLEDEncoderSelfAttention(config, layer_id=layer_id, name="longformer_self_attn")
self.output_dense = tf.keras.layers.Dense(config.d_model, use_bias=True, name="output")
def call(self, inputs, training=False):
(
hidden_states,
attention_mask,
layer_head_mask,
is_index_masked,
is_index_global_attn,
is_global_attn,
) = inputs
self_outputs = self.longformer_self_attn(
[hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn],
training=training,
)
attention_output = self.output_dense(self_outputs[0], training=training)
outputs = (attention_output,) + self_outputs[1:]
return outputs
class TFLEDDecoderAttention(tf.keras.layers.Layer):
"""Multi-headed attention from "Attention Is All You Need"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = tf.keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim ** -0.5
self.is_decoder = is_decoder
self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
key_value_states: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[Tuple[tf.Tensor]]] = None,
attention_mask: Optional[tf.Tensor] = None,
layer_head_mask: Optional[tf.Tensor] = None,
training=False,
) -> Tuple[tf.Tensor, Optional[tf.Tensor]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = shape_list(hidden_states)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = tf.concat([past_key_value[0], key_states], axis=2)
value_states = tf.concat([past_key_value[1], value_states], axis=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
key_states = tf.reshape(key_states, proj_shape)
value_states = tf.reshape(value_states, proj_shape)
src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len],
message=f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {shape_list(attn_weights)}",
)
if attention_mask is not None:
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(attention_mask),
[bsz, 1, tgt_len, src_len],
message=f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {shape_list(attention_mask)}",
)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + tf.cast(
attention_mask, dtype=attn_weights.dtype
)
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = tf.nn.softmax(attn_weights, axis=-1)
if layer_head_mask is not None:
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=f"Head mask for a single layer should be of size {(self.num_heads)}, but is {shape_list(layer_head_mask)}",
)
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
)
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states)
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim],
message=f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {shape_list(attn_output)}",
)
attn_output = tf.transpose(
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
)
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
attn_output = self.out_proj(attn_output)
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
return attn_output, attn_weights, past_key_value
class TFLEDEncoderLayer(tf.keras.layers.Layer):
def __init__(self, config: LEDConfig, layer_id: int, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFLEDEncoderAttention(config, layer_id, name="self_attn")
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
self.fc1 = tf.keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
layer_head_mask: tf.Tensor,
is_index_masked: tf.Tensor,
is_index_global_attn: tf.Tensor,
is_global_attn: bool,
training=False,
):
"""
Args:
hidden_states (:obj:`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (:obj:`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`tf.Tensor`): mask for attention heads in a given layer of size
`(config.encoder_attention_heads,)`.
"""
residual = hidden_states
layer_outputs = self.self_attn(
[hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn],
training=training,
)
hidden_states = layer_outputs[0]
if tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(hidden_states),
shape_list(residual),
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
return (hidden_states,) + layer_outputs[1:]
class TFLEDDecoderLayer(tf.keras.layers.Layer):
def __init__(self, config: LEDConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TFLEDDecoderAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
name="self_attn",
is_decoder=True,
)
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.encoder_attn = TFLEDDecoderAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
name="encoder_attn",
is_decoder=True,
)
self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
self.fc1 = tf.keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
def call(
self,
hidden_states,
attention_mask: Optional[tf.Tensor] = None,
encoder_hidden_states: Optional[tf.Tensor] = None,
encoder_attention_mask: Optional[tf.Tensor] = None,
layer_head_mask: Optional[tf.Tensor] = None,
encoder_layer_head_mask: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[tf.Tensor]] = None,
training=False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
"""
Args:
hidden_states (:obj:`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (:obj:`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (:obj:`tf.Tensor`): cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (:obj:`tf.Tensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (:obj:`tf.Tensor`): mask for attention heads in a given layer of size
`(config.encoder_attention_heads,)`.
encoder_layer_head_mask (:obj:`tf.Tensor`): mask for encoder attention heads in a given layer of
size `(config.encoder_attention_heads,)`.
past_key_value (:obj:`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, _, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=encoder_layer_head_mask,
past_key_value=cross_attn_past_key_value,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
return (
hidden_states,
self_attn_weights,
present_key_value,
)
class TFLEDPreTrainedModel(TFPreTrainedModel):
config_class = LEDConfig
base_model_prefix = "led"
@property
def dummy_inputs(self):
input_ids = tf.convert_to_tensor([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0]])
# make sure global layers are initialized
attention_mask = tf.convert_to_tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0]])
global_attention_mask = tf.convert_to_tensor([[0, 0, 0, 0, 1], [0, 0, 1, 0, 0]])
dummy_inputs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"global_attention_mask": global_attention_mask,
"decoder_input_ids": input_ids,
}
return dummy_inputs
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
"decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"),
"decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
@dataclass
# Copied from transformers.models.longformer.modeling_tf_longformer.TFLongformerBaseModelOutput with TFLongformer->TFLEDEncoder
class TFLEDEncoderBaseModelOutput(ModelOutput):
"""
Base class for Longformer's outputs, with potential hidden states, local and global attentions.
Args:
last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where ``x`` is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first ``x`` values) and to every token in the attention window (remaining
``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in
the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the
attention weight of a token to itself is located at index ``x + attention_window / 2`` and the
``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window
/ 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the
attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x``
attention weights. If a token has global attention, the attention weights to all other tokens in
:obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`.
global_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x)`,
where ``x`` is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
last_hidden_state: tf.Tensor = None
hidden_states: Optional[Tuple[tf.Tensor]] = None
attentions: Optional[Tuple[tf.Tensor]] = None
global_attentions: Optional[Tuple[tf.Tensor]] = None
@dataclass
class TFLEDSeq2SeqModelOutput(ModelOutput):
"""
Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential
decoding.
Args:
last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
If :obj:`past_key_values` is used only the last hidden-state of the sequences of shape :obj:`(batch_size,
1, hidden_size)` is output.
past_key_values (:obj:`List[tf.Tensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
List of :obj:`tf.Tensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size,
num_heads, sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see :obj:`past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
encoder_global_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x)`,
where ``x`` is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
last_hidden_state: tf.Tensor = None
past_key_values: Optional[List[tf.Tensor]] = None
decoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
decoder_attentions: Optional[Tuple[tf.Tensor]] = None
cross_attentions: Optional[Tuple[tf.Tensor]] = None
encoder_last_hidden_state: Optional[tf.Tensor] = None
encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
encoder_attentions: Optional[Tuple[tf.Tensor]] = None
encoder_global_attentions: Optional[Tuple[tf.Tensor]] = None
@dataclass
class TFLEDSeq2SeqLMOutput(ModelOutput):
"""
Base class for sequence-to-sequence language models outputs.
Args:
loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Language modeling loss.
logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (:obj:`List[tf.Tensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
List of :obj:`tf.Tensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size,
num_heads, sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see :obj:`past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
encoder_global_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x)`,
where ``x`` is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
loss: Optional[tf.Tensor] = None
logits: tf.Tensor = None
past_key_values: Optional[List[tf.Tensor]] = None
decoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
decoder_attentions: Optional[Tuple[tf.Tensor]] = None
cross_attentions: Optional[Tuple[tf.Tensor]] = None
encoder_last_hidden_state: Optional[tf.Tensor] = None
encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
encoder_attentions: Optional[Tuple[tf.Tensor]] = None
encoder_global_attentions: Optional[Tuple[tf.Tensor]] = None
LED_START_DOCSTRING = r"""
This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the
generic methods the library implements for all its model (such as downloading or saving, resizing the input
embeddings, pruning heads etc.)
This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use
it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage
and behavior.
.. note::
TF 2.0 models accepts two formats as inputs:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all
the tensors in the first argument of the model call function: :obj:`model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in
the first positional argument :
- a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
:obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
:obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Args:
config (:class:`~transformers.LEDConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the :meth:`~transformers.TFPreTrainedModel.from_pretrained` method to load the
model weights.
"""
LED_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`tf.Tensor` of shape :obj:`({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.BertTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
decoder_input_ids (:obj:`tf.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.LedTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
LED uses the :obj:`eos_token_id` as the starting token for :obj:`decoder_input_ids` generation. If
:obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see
:obj:`past_key_values`).
decoder_attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (:obj:`tf.FloatTensor`, `optional`):
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape :obj:`(batch_size, sequence_length, hidden_size)` is a sequence of
past_key_values (:obj:`Tuple[Tuple[tf.Tensor]]` of length :obj:`config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
decoding (see :obj:`past_key_values`). Set to :obj:`False` during training, :obj:`True` during generation
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This
argument can be used in eager mode, in graph mode the value will always be set to True.
training (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@keras_serializable
class TFLEDEncoder(tf.keras.layers.Layer):
config_class = LEDConfig
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
:class:`TFLEDEncoderLayer`.
Args:
config: LEDConfig
"""
def __init__(self, config: LEDConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, **kwargs):
super().__init__(**kwargs)
self.config = config
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.layerdrop = config.encoder_layerdrop
self.padding_idx = config.pad_token_id
if isinstance(config.attention_window, int):
assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value"
assert config.attention_window > 0, "`config.attention_window` has to be positive"
config.attention_window = [config.attention_window] * config.num_hidden_layers # one value per layer
else:
assert len(config.attention_window) == config.num_hidden_layers, (
"`len(config.attention_window)` should equal `config.num_hidden_layers`. "
f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}"
)
self.attention_window = config.attention_window
self.embed_tokens = embed_tokens
self.embed_positions = TFLEDLearnedPositionalEmbedding(
config.max_encoder_position_embeddings,
config.d_model,
name="embed_positions",
)
self.layers = [TFLEDEncoderLayer(config, i, name=f"layers.{i}") for i in range(config.encoder_layers)]
self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
def get_embed_tokens(self):
return self.embed_tokens
def set_embed_tokens(self, embed_tokens):
self.embed_tokens = embed_tokens
def call(
self,
input_ids=None,
inputs_embeds=None,
attention_mask=None,
global_attention_mask=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
"""
Args:
input_ids (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using :class:`~transformers.LEDTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
head_mask (:obj:`tf.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert :obj:`input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
global_attention_mask=global_attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif inputs["input_ids"] is not None:
input_shape = shape_list(inputs["input_ids"])
inputs["inputs_embeds"] = self.embed_tokens(inputs["input_ids"])
elif inputs["inputs_embeds"] is not None:
input_shape = shape_list(inputs["inputs_embeds"])[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs["attention_mask"] is None:
inputs["attention_mask"] = tf.fill(input_shape, 1)
# merge `global_attention_mask` and `attention_mask`
if inputs["global_attention_mask"] is not None:
inputs["attention_mask"] = inputs["global_attention_mask"] + 1
(
padding_len,
inputs["input_ids"],
inputs["attention_mask"],
inputs["inputs_embeds"],
) = self._pad_to_window_size(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
inputs_embeds=inputs["inputs_embeds"],
pad_token_id=self.padding_idx,
)
input_shape = shape_list(inputs["attention_mask"])
# is index masked or global attention
is_index_masked = tf.math.less(tf.cast(inputs["attention_mask"], tf.int8), 1)
is_index_global_attn = tf.math.greater(tf.cast(inputs["attention_mask"], tf.int8), 1)
is_global_attn = tf.math.reduce_any(is_index_global_attn)
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs["inputs_embeds"] + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = self.dropout(hidden_states, training=inputs["training"])
# check attention mask and invert
if inputs["attention_mask"] is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
inputs["attention_mask"] = _expand_mask(inputs["attention_mask"])[:, 0, 0, :]
inputs["attention_mask"] = inputs["attention_mask"][:, :, None, None]
encoder_states = () if inputs["output_hidden_states"] else None
all_attentions = all_global_attentions = () if inputs["output_attentions"] else None
# check if head_mask has a correct number of layers specified if desired
if inputs["head_mask"] is not None and tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(inputs["head_mask"])[0],
len(self.layers),
message=f"The head_mask should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs['head_mask'])[0]}.",
)
# encoder layers
for idx, encoder_layer in enumerate(self.layers):
if inputs["output_hidden_states"]:
hidden_states_to_add = self.compute_hidden_states(hidden_states, padding_len)
encoder_states = encoder_states + (hidden_states_to_add,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if inputs["training"] and (dropout_probability < self.layerdrop): # skip the layer
continue
layer_outputs = encoder_layer(
hidden_states=hidden_states,
attention_mask=inputs["attention_mask"],
layer_head_mask=inputs["head_mask"][idx] if inputs["head_mask"] is not None else None,
is_index_masked=is_index_masked,
is_index_global_attn=is_index_global_attn,
is_global_attn=is_global_attn,
)
hidden_states = layer_outputs[0]
if inputs["output_attentions"]:
# bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1)
all_attentions = all_attentions + (tf.transpose(layer_outputs[1], (0, 2, 1, 3)),)
# bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn
all_global_attentions = all_global_attentions + (tf.transpose(layer_outputs[2], (0, 1, 3, 2)),)
# undo padding
# unpad `hidden_states` because the calling function is expecting a length == input_ids.size(1)
hidden_states = self.compute_hidden_states(hidden_states, padding_len)
if inputs["output_hidden_states"]:
encoder_states = encoder_states + (hidden_states,)
if not inputs["return_dict"]:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return TFLEDEncoderBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_states,
attentions=all_attentions,
global_attentions=all_global_attentions,
)
@tf.function
def compute_hidden_states(self, hidden_states, padding_len):
return hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states
def _pad_to_window_size(
self,
input_ids,
attention_mask,
inputs_embeds,
pad_token_id,
):
"""A helper function to pad tokens and mask to work with implementation of Longformer selfattention."""
# padding
attention_window = (
self.attention_window if isinstance(self.attention_window, int) else max(self.attention_window)
)
assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}"
input_shape = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds)
batch_size, seq_len = input_shape[:2]
padding_len = (attention_window - seq_len % attention_window) % attention_window
if padding_len > 0:
logger.info(
f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of "
f"`config.attention_window`: {attention_window}"
)
paddings = tf.convert_to_tensor([[0, 0], [0, padding_len]])
if input_ids is not None:
input_ids = tf.pad(input_ids, paddings, constant_values=pad_token_id)
if inputs_embeds is not None:
def pad_embeddings():
input_ids_padding = tf.fill((batch_size, padding_len), pad_token_id)
inputs_embeds_padding = self.embed_tokens(input_ids_padding)
return tf.concat([inputs_embeds, inputs_embeds_padding], axis=-2)
inputs_embeds = tf.cond(tf.math.greater(padding_len, 0), pad_embeddings, lambda: inputs_embeds)
attention_mask = tf.pad(attention_mask, paddings, constant_values=False) # no attention on the padding tokens
return (
padding_len,
input_ids,
attention_mask,
inputs_embeds,
)
@keras_serializable
class TFLEDDecoder(tf.keras.layers.Layer):
config_class = LEDConfig
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`TFLEDDecoderLayer`
Args:
config: LEDConfig
embed_tokens: output embedding
"""
def __init__(self, config: LEDConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, **kwargs):
super().__init__(**kwargs)
self.config = config
self.padding_idx = config.pad_token_id
self.embed_tokens = embed_tokens
self.layerdrop = config.decoder_layerdrop
self.embed_positions = TFLEDLearnedPositionalEmbedding(
config.max_decoder_position_embeddings,
config.d_model,
name="embed_positions",
)
self.layers = [TFLEDDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
self.dropout = tf.keras.layers.Dropout(config.dropout)
def set_embed_tokens(self, embed_tokens):
self.embed_tokens = embed_tokens
def call(
self,
input_ids=None,
inputs_embeds=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
encoder_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
r"""
Args:
input_ids (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it. Indices can be obtained using :class:`~transformers.LEDTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
for details. `What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
encoder_hidden_states (:obj:`tf.Tensor` of shape :obj:`(batch_size, encoder_sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, encoder_sequence_length)`, `optional`):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention
on hidden heads. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (:obj:`Tuple[Tuple[tf.Tensor]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
decoding. If :obj:`past_key_values` are used, the user can optionally input only the last
:obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of
shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size,
sequence_length)`.
inputs_embeds (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert :obj:`input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
encoder_head_mask=encoder_head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif inputs["input_ids"] is not None:
input_shape = shape_list(inputs["input_ids"])
elif inputs["inputs_embeds"] is not None:
input_shape = shape_list(inputs["inputs_embeds"])[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
past_key_values_length = (
shape_list(inputs["past_key_values"][0][0])[2] if inputs["past_key_values"] is not None else 0
)
# embed positions
positions = self.embed_positions(input_shape, past_key_values_length)
if inputs["inputs_embeds"] is None:
inputs["inputs_embeds"] = self.embed_tokens(inputs["input_ids"])
hidden_states = inputs["inputs_embeds"]
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
else:
combined_attention_mask = _expand_mask(
tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
)
if inputs["attention_mask"] is not None and input_shape[-1] > 1:
combined_attention_mask = combined_attention_mask + _expand_mask(
inputs["attention_mask"], tgt_len=input_shape[-1]
)
if inputs["encoder_hidden_states"] is not None and inputs["encoder_attention_mask"] is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
inputs["encoder_attention_mask"] = _expand_mask(inputs["encoder_attention_mask"], tgt_len=input_shape[-1])
hidden_states = self.layernorm_embedding(hidden_states + positions)
hidden_states = self.dropout(hidden_states, training=inputs["training"])
# decoder layers
all_hidden_states = ()
all_self_attns = ()
present_key_values = ()
# check if head_mask has a correct number of layers specified if desired
if inputs["head_mask"] is not None and tf.executing_eagerly():
tf.debugging.assert_equal(
shape_list(inputs["head_mask"])[0],
len(self.layers),
message=f"The head_mask should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs['head_mask'])[0]}.",
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if inputs["output_hidden_states"]:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if inputs["training"] and (dropout_probability < self.layerdrop):
continue
past_key_value = inputs["past_key_values"][idx] if inputs["past_key_values"] is not None else None
hidden_states, layer_self_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=inputs["encoder_hidden_states"],
encoder_attention_mask=inputs["encoder_attention_mask"],
layer_head_mask=inputs["head_mask"][idx] if inputs["head_mask"] is not None else None,
encoder_layer_head_mask=inputs["encoder_head_mask"][idx]
if inputs["encoder_head_mask"] is not None
else None,
past_key_value=past_key_value,
)
if inputs["use_cache"]:
present_key_values += (present_key_value,)
if inputs["output_attentions"]:
all_self_attns += (layer_self_attn,)
if inputs["output_hidden_states"]:
all_hidden_states += (hidden_states,)
else:
all_hidden_states = None
all_self_attns = list(all_self_attns) if inputs["output_attentions"] else None
present_key_values = (encoder_hidden_states, present_key_values) if inputs["use_cache"] else None
if not inputs["return_dict"]:
return hidden_states, present_key_values, all_hidden_states, all_self_attns
else:
return TFBaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
@keras_serializable
class TFLEDMainLayer(tf.keras.layers.Layer):
config_class = LEDConfig
def __init__(self, config: LEDConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.shared = TFSharedEmbeddings(config.vocab_size, config.d_model, config.pad_token_id, name="led.shared")
with tf.compat.v1.variable_scope("led.shared") as shared_abs_scope_name:
pass
# Wraps layer to avoid problems with weight restoring and ensuring we're in the correct TF scope.
embed_tokens = TFWrappedEmbeddings(self.shared, abs_scope_name=shared_abs_scope_name)
embed_tokens.vocab_size = self.shared.vocab_size
embed_tokens.hidden_size = self.shared.hidden_size
self.encoder = TFLEDEncoder(config, embed_tokens, name="encoder")
self.decoder = TFLEDDecoder(config, embed_tokens, name="decoder")
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared.weight = new_embeddings
self.shared.vocab_size = self.shared.weight.shape[0]
# retrieve correct absolute scope for embed token wrapper
with tf.compat.v1.variable_scope("led.shared") as shared_abs_scope_name:
pass
# Wraps layer to avoid problems with weight restoring and ensuring we're in the correct TF scope.
embed_tokens = TFWrappedEmbeddings(self.shared, abs_scope_name=shared_abs_scope_name)
self.encoder.set_embed_tokens(embed_tokens)
self.decoder.set_embed_tokens(embed_tokens)
def call(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFLEDEncoderBaseModelOutput]] = None,
global_attention_mask=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs
):
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
encoder_outputs=encoder_outputs,
global_attention_mask=global_attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
if inputs["decoder_input_ids"] is None and inputs["decoder_inputs_embeds"] is None:
inputs["use_cache"] = False
if inputs["encoder_outputs"] is None:
inputs["encoder_outputs"] = self.encoder(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
global_attention_mask=inputs["global_attention_mask"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
# If the user passed a tuple for encoder_outputs, we wrap it in a TFLEDEncoderBaseModelOutput when return_dict=True
elif inputs["return_dict"] and not isinstance(inputs["encoder_outputs"], TFLEDEncoderBaseModelOutput):
inputs["encoder_outputs"] = TFLEDEncoderBaseModelOutput(
last_hidden_state=inputs["encoder_outputs"][0],
hidden_states=inputs["encoder_outputs"][1] if len(inputs["encoder_outputs"]) > 1 else None,
attentions=inputs["encoder_outputs"][2] if len(inputs["encoder_outputs"]) > 2 else None,
)
# If the user passed a TFLEDEncoderBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
elif not inputs["return_dict"] and not isinstance(inputs["encoder_outputs"], tuple):
inputs["encoder_outputs"] = inputs["encoder_outputs"].to_tuple()
decoder_outputs = self.decoder(
inputs["decoder_input_ids"],
attention_mask=inputs["decoder_attention_mask"],
encoder_hidden_states=inputs["encoder_outputs"][0],
encoder_attention_mask=inputs["attention_mask"],
head_mask=inputs["decoder_head_mask"],
encoder_head_mask=inputs["head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["decoder_inputs_embeds"],
use_cache=inputs["use_cache"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
if not inputs["return_dict"]:
return decoder_outputs + inputs["encoder_outputs"]
return TFLEDSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
encoder_last_hidden_state=inputs["encoder_outputs"].last_hidden_state,
encoder_hidden_states=inputs["encoder_outputs"].hidden_states,
encoder_attentions=inputs["encoder_outputs"].attentions,
encoder_global_attentions=inputs["encoder_outputs"].global_attentions,
)
@add_start_docstrings(
"The bare LED Model outputting raw hidden-states without any specific head on top.",
LED_START_DOCSTRING,
)
class TFLEDModel(TFLEDPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.led = TFLEDMainLayer(config, name="led")
def get_encoder(self):
return self.led.encoder
def get_decoder(self):
return self.led.decoder
@add_start_docstrings_to_model_forward(LED_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFLEDSeq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
encoder_outputs: Optional[Union[Tuple, TFLEDEncoderBaseModelOutput]] = None,
global_attention_mask=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs
):
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
encoder_outputs=encoder_outputs,
global_attention_mask=global_attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
outputs = self.led(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
decoder_input_ids=inputs["decoder_input_ids"],
decoder_attention_mask=inputs["decoder_attention_mask"],
encoder_outputs=inputs["encoder_outputs"],
global_attention_mask=inputs["global_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["inputs_embeds"],
decoder_inputs_embeds=inputs["decoder_inputs_embeds"],
use_cache=inputs["use_cache"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
return outputs
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
enc_g_attns = tf.convert_to_tensor(output.encoder_global_attentions) if self.config.output_attentions else None
return TFLEDSeq2SeqModelOutput(
last_hidden_state=output.last_hidden_state,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
encoder_global_attentions=enc_g_attns,
)
@add_start_docstrings(
"The LED Model with a language modeling head. Can be used for summarization.",
LED_START_DOCSTRING,
)
class TFLEDForConditionalGeneration(TFLEDPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [
r"led.encoder.embed_tokens.weight",
r"led.decoder.embed_tokens.weight",
]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.led = TFLEDMainLayer(config, name="led")
self.use_cache = config.use_cache
# final_bias_logits is registered as a buffer in pytorch, so not trainable for the the sake of consistency.
self.final_logits_bias = self.add_weight(
name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
)
def get_decoder(self):
return self.led.decoder
def get_encoder(self):
return self.led.encoder
def get_bias(self):
return {"final_logits_bias": self.final_logits_bias}
def set_bias(self, value):
self.final_logits_bias = value["final_logits_bias"]
def get_output_embeddings(self):
return self.get_input_embeddings()
def set_output_embeddings(self, value):
self.set_input_embeddings(value)
@add_start_docstrings_to_model_forward(LED_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFLEDSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
encoder_outputs: Optional[TFLEDEncoderBaseModelOutput] = None,
global_attention_mask=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
labels=None,
training=False,
**kwargs,
):
"""
Returns:
Examples::
>>> from transformers import LEDTokenizer, TFLEDForConditionalGeneration
>>> import tensorflow as tf
>>> mname = 'allenai/led-base-16384'
>>> tokenizer = LEDTokenizer.from_pretrained(mname)
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> model = TFLEDForConditionalGeneration.from_pretrained(mname)
>>> batch = tokenizer([TXT], return_tensors='tf')
>>> logits = model(inputs=batch.input_ids).logits
>>> probs = tf.nn.softmax(logits[0])
>>> # probs[5] is associated with the mask token
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
encoder_outputs=encoder_outputs,
global_attention_mask=global_attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
training=training,
kwargs_call=kwargs,
)
if inputs["labels"] is not None:
inputs["use_cache"] = False
if inputs["decoder_input_ids"] is None:
inputs["decoder_input_ids"] = shift_tokens_right(
inputs["labels"], self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.led(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
decoder_input_ids=inputs["decoder_input_ids"],
decoder_attention_mask=inputs["decoder_attention_mask"],
encoder_outputs=inputs["encoder_outputs"],
global_attention_mask=inputs["global_attention_mask"],
head_mask=inputs["head_mask"],
decoder_head_mask=inputs["decoder_head_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["inputs_embeds"],
decoder_inputs_embeds=inputs["decoder_inputs_embeds"],
use_cache=inputs["use_cache"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
lm_logits = self.led.shared(outputs[0], mode="linear")
lm_logits = lm_logits + self.final_logits_bias
masked_lm_loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], lm_logits)
if not inputs["return_dict"]:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return TFLEDSeq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values, # index 1 of d outputs
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
encoder_last_hidden_state=outputs.last_hidden_state, # index 0 of encoder outputs
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
encoder_attentions=outputs.encoder_attentions, # 2 of e out
encoder_global_attentions=outputs.encoder_global_attentions,
)
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
enc_g_attns = tf.convert_to_tensor(output.encoder_global_attentions) if self.config.output_attentions else None
return TFLEDSeq2SeqLMOutput(
logits=output.logits,
past_key_values=pkv,
decoder_hidden_states=dec_hs,
decoder_attentions=dec_attns,
encoder_last_hidden_state=output.encoder_last_hidden_state,
encoder_hidden_states=enc_hs,
encoder_attentions=enc_attns,
encoder_global_attentions=enc_g_attns,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past,
attention_mask,
head_mask=None,
use_cache=None,
**kwargs,
) -> Dict:
assert past is not None and len(past) in {1, 2}, f"past has to be an iterable of length 1,2 got {past}"
if len(past) == 1:
assert isinstance(past[0], tf.Tensor), f"`past[0]` has to be of type `tf.Tensor`, but is {type(past[0])}"
encoder_outputs = TFLEDEncoderBaseModelOutput(last_hidden_state=past[0])
past_key_values = None
else:
assert (
len(past) == 2
), "`past` has to be of length 2 with the encoder_outputs at the first position and past_key_values at the second position."
encoder_outputs, past_key_values = past
if isinstance(encoder_outputs, tuple):
assert isinstance(
encoder_outputs[0], tf.Tensor
), f"`encoder_outputs[0]` has to be of type `tf.Tensor`, but is {type(encoder_outputs[0])}"
encoder_outputs = TFLEDEncoderBaseModelOutput(last_hidden_state=encoder_outputs[0])
elif isinstance(encoder_outputs, tf.Tensor):
encoder_outputs = TFLEDEncoderBaseModelOutput(last_hidden_state=encoder_outputs)
assert (
past_key_values
), f"decoder cached states must be truthy. got {past_key_values} from the 2nd element of past"
decoder_input_ids = decoder_input_ids[:, -1:]
assert isinstance(
encoder_outputs,
TFLEDEncoderBaseModelOutput,
), f"encoder_outputs should be a TFLEDEncoderBaseModelOutput, Instead got {type(encoder_outputs)}."
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
@staticmethod
def _reorder_cache(past, beam_idx):
if len(past) == 1:
return past
past_key_values = past[1]
reordered_past = ()
for layer_past_key_values in past_key_values:
reordered_past += (
tuple(tf.gather(layer_past_key_value, beam_idx) for layer_past_key_value in layer_past_key_values[:2])
+ layer_past_key_values[2:],
)
return (past[0], reordered_past)
def compute_loss(self, labels, logits):
"""CrossEntropyLoss that ignores pad tokens"""
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True,
reduction=tf.keras.losses.Reduction.NONE,
)
melted_labels = tf.reshape(labels, (-1,))
active_loss = tf.not_equal(melted_labels, self.config.pad_token_id)
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
labels = tf.boolean_mask(melted_labels, active_loss)
return loss_fn(labels, reduced_logits)
|