Spaces:
Sleeping
Sleeping
File size: 30,518 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 |
# coding=utf-8
# Copyright 2021 The I-BERT Authors (Sehoon Kim, Amir Gholami, Zhewei Yao,
# Michael Mahoney, Kurt Keutzer - UC Berkeley) and The HuggingFace Inc. team.
# Copyright (c) 20121, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import decimal
import numpy as np
import torch
from torch import nn
from torch.autograd import Function
from ...utils import logging
logger = logging.get_logger(__name__)
class QuantEmbedding(nn.Module):
"""
Quantized version of :obj:`torch.nn.Embedding`. Adds quantization-specific arguments on top of
:obj:`torch.nn.Embedding`.
Args:
weight_bit (:obj:`int`, `optional`, defaults to :obj:`8`):
Bitwidth for the quantized weight.
momentum (:obj:`float`, `optional`, defaults to :obj:`0.95`):
Momentum for updating the activation quantization range.
quant_mode (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the layer is quantized.
"""
def __init__(
self,
num_embeddings,
embedding_dim,
padding_idx=None,
max_norm=None,
norm_type=2.0,
scale_grad_by_freq=False,
sparse=False,
_weight=None,
weight_bit=8,
momentum=0.95,
quant_mode=False,
):
super().__init__()
self.num_ = num_embeddings
self.dim = embedding_dim
self.padding_idx = padding_idx
self.max_norm = max_norm
self.norm_type = norm_type
self.scale_grad_by_freq = scale_grad_by_freq
self.sparse = sparse
self.weight = nn.Parameter(torch.zeros([num_embeddings, embedding_dim]))
self.register_buffer("weight_scaling_factor", torch.zeros(1))
self.register_buffer("weight_integer", torch.zeros_like(self.weight))
self.weight_bit = weight_bit
self.momentum = momentum
self.quant_mode = quant_mode
self.percentile_mode = False
self.weight_function = SymmetricQuantFunction.apply
def forward(self, x, positions=None, incremental_state=None):
if not self.quant_mode:
return (
nn.functional.embedding(
x,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
),
None,
)
w = self.weight
w_transform = w.data.detach()
w_min = w_transform.min().expand(1)
w_max = w_transform.max().expand(1)
self.weight_scaling_factor = symmetric_linear_quantization_params(self.weight_bit, w_min, w_max, False)
self.weight_integer = self.weight_function(
self.weight, self.weight_bit, self.percentile_mode, self.weight_scaling_factor
)
emb_int = nn.functional.embedding(
x,
self.weight_integer,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
return emb_int * self.weight_scaling_factor, self.weight_scaling_factor
class QuantAct(nn.Module):
"""
Quantizes the given activation.
Args:
activation_bit (:obj:`int`):
Bitwidth for the quantized activation.
act_range_momentum (:obj:`float`, `optional`, defaults to :obj:`0.95`):
Momentum for updating the activation quantization range.
per_channel (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to or not use channel-wise quantization.
channel_len (:obj:`int`, `optional`):
Specify the channel length when set the `per_channel` True.
quant_mode (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the layer is quantized.
"""
def __init__(self, activation_bit, act_range_momentum=0.95, per_channel=False, channel_len=None, quant_mode=False):
super().__init__()
self.activation_bit = activation_bit
self.act_range_momentum = act_range_momentum
self.quant_mode = quant_mode
self.per_channel = per_channel
self.percentile = False
self.act_function = SymmetricQuantFunction.apply
if not self.per_channel:
self.register_buffer("x_min", torch.zeros(1))
self.register_buffer("x_max", torch.zeros(1))
self.register_buffer("act_scaling_factor", torch.zeros(1))
self.x_min -= 1e-5
self.x_max += 1e-5
else:
raise NotImplementedError("per-channel mode is not currently supported for activation.")
def __repr__(self):
return (
f"{self.__class__.__name__}(activation_bit={self.activation_bit}, "
f"quant_mode: {self.activation_bit}, Act_min: {self.x_min.item():.2f}, "
f"Act_max: {self.x_max.item():.2f})"
)
def forward(
self,
x,
pre_act_scaling_factor=None,
identity=None,
identity_scaling_factor=None,
specified_min=None,
specified_max=None,
):
x_act = x if identity is None else identity + x
# collect running stats if training
if self.training:
assert not self.percentile, "percentile mode is not currently supported for activation."
assert not self.per_channel, "per-channel mode is not currently supported for activation."
x_min = x_act.data.min()
x_max = x_act.data.max()
assert (
x_max.isnan().sum() == 0 and x_min.isnan().sum() == 0
), "NaN detected when computing min/max of the activation"
# Initialization
if self.x_min.min() > -1.1e-5 and self.x_max.max() < 1.1e-5:
self.x_min = self.x_min + x_min
self.x_max = self.x_max + x_max
# exponential moving average (EMA)
# use momentum to prevent the quantized values change greatly every iteration
elif self.act_range_momentum == -1:
self.x_min = torch.min(self.x_min, x_min)
self.x_max = torch.max(self.x_max, x_max)
else:
self.x_min = self.x_min * self.act_range_momentum + x_min * (1 - self.act_range_momentum)
self.x_max = self.x_max * self.act_range_momentum + x_max * (1 - self.act_range_momentum)
if not self.quant_mode:
return x_act, None
x_min = self.x_min if specified_min is None else specified_min
x_max = self.x_max if specified_max is None else specified_max
self.act_scaling_factor = symmetric_linear_quantization_params(
self.activation_bit, x_min, x_max, per_channel=self.per_channel
)
if pre_act_scaling_factor is None:
# this is for the input quantization
quant_act_int = self.act_function(x, self.activation_bit, self.percentile, self.act_scaling_factor)
else:
quant_act_int = FixedPointMul.apply(
x,
pre_act_scaling_factor,
self.activation_bit,
self.act_scaling_factor,
identity,
identity_scaling_factor,
)
correct_output_scale = self.act_scaling_factor.view(-1)
return quant_act_int * correct_output_scale, self.act_scaling_factor
class QuantLinear(nn.Module):
"""
Quantized version of :obj:`torch.nn.Linear`. Adds quantization-specific arguments on top of :obj:`torch.nn.Linear`.
Args:
weight_bit (:obj:`int`, `optional`, defaults to :obj:`8`):
Bitwidth for the quantized weight.
bias_bit (:obj:`int`, `optional`, defaults to :obj:`32`):
Bitwidth for the quantized bias.
per_channel (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use channel-wise quantization.
quant_mode (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the layer is quantized.
"""
def __init__(
self, in_features, out_features, bias=True, weight_bit=8, bias_bit=32, per_channel=False, quant_mode=False
):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.zeros([out_features, in_features]))
self.register_buffer("weight_integer", torch.zeros_like(self.weight))
self.register_buffer("fc_scaling_factor", torch.zeros(self.out_features))
if bias:
self.bias = nn.Parameter(torch.zeros(out_features))
self.register_buffer("bias_integer", torch.zeros_like(self.bias))
self.weight_bit = weight_bit
self.quant_mode = quant_mode
self.per_channel = per_channel
self.bias_bit = bias_bit
self.quant_mode = quant_mode
self.percentile_mode = False
self.weight_function = SymmetricQuantFunction.apply
def __repr__(self):
s = super().__repr__()
s = f"({s} weight_bit={self.weight_bit}, quant_mode={self.quant_mode})"
return s
def forward(self, x, prev_act_scaling_factor=None):
if not self.quant_mode:
return nn.functional.linear(x, weight=self.weight, bias=self.bias), None
# assert that prev_act_scaling_factor is a scalar tensor
assert prev_act_scaling_factor is not None and prev_act_scaling_factor.shape == (1,), (
"Input activation to the QuantLinear layer should be globally (non-channel-wise) quantized. "
"Please add a QuantAct layer with `per_channel = True` before this QuantAct layer"
)
w = self.weight
w_transform = w.data.detach()
if self.per_channel:
w_min, _ = torch.min(w_transform, dim=1, out=None)
w_max, _ = torch.max(w_transform, dim=1, out=None)
else:
w_min = w_transform.min().expand(1)
w_max = w_transform.max().expand(1)
self.fc_scaling_factor = symmetric_linear_quantization_params(self.weight_bit, w_min, w_max, self.per_channel)
self.weight_integer = self.weight_function(
self.weight, self.weight_bit, self.percentile_mode, self.fc_scaling_factor
)
bias_scaling_factor = self.fc_scaling_factor * prev_act_scaling_factor
if self.bias is not None:
self.bias_integer = self.weight_function(self.bias, self.bias_bit, False, bias_scaling_factor)
prev_act_scaling_factor = prev_act_scaling_factor.view(1, -1)
x_int = x / prev_act_scaling_factor
return (
nn.functional.linear(x_int, weight=self.weight_integer, bias=self.bias_integer) * bias_scaling_factor,
bias_scaling_factor,
)
class IntGELU(nn.Module):
"""
Quantized version of :obj:`torch.nn.GELU`. Adds quantization-specific arguments on top of :obj:`torch.nn.GELU`.
Args:
quant_mode (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the layer is quantized.
force_dequant (:obj:`str`, `optional`, defaults to :obj:`"none"`):
Force dequantize the layer if either "gelu" or "nonlinear" is given.
"""
def __init__(self, quant_mode=True, force_dequant="none"):
super().__init__()
self.quant_mode = quant_mode
if force_dequant in ["nonlinear", "gelu"]:
logger.info("Force dequantize gelu")
self.quant_mode = False
if not self.quant_mode:
self.activation_fn = nn.GELU()
self.k = 1.4142
self.const = 14 # dummy integer constant
self.coeff = [-0.2888, -1.769, 1] # a(x+b)**2 + c
self.coeff[2] /= self.coeff[0]
def int_erf(self, x_int, scaling_factor):
b_int = torch.floor(self.coeff[1] / scaling_factor)
c_int = torch.floor(self.coeff[2] / scaling_factor ** 2)
sign = torch.sign(x_int)
abs_int = torch.min(torch.abs(x_int), -b_int)
y_int = sign * ((abs_int + b_int) ** 2 + c_int)
scaling_factor = scaling_factor ** 2 * self.coeff[0]
# avoid overflow
y_int = floor_ste.apply(y_int / 2 ** self.const)
scaling_factor = scaling_factor * 2 ** self.const
return y_int, scaling_factor
def forward(self, x, scaling_factor=None):
if not self.quant_mode:
return self.activation_fn(x), None
x_int = x / scaling_factor
sigmoid_int, sigmoid_scaling_factor = self.int_erf(x_int, scaling_factor / self.k)
shift_int = 1.0 // sigmoid_scaling_factor
x_int = x_int * (sigmoid_int + shift_int)
scaling_factor = scaling_factor * sigmoid_scaling_factor / 2
return x_int * scaling_factor, scaling_factor
class IntSoftmax(nn.Module):
"""
Quantized version of :obj:`torch.nn.Softmax`. Adds quantization-specific arguments on top of
:obj:`torch.nn.Softmax`.
Args:
output_bit (:obj:`int`):
Bitwidth for the layer output activation.
quant_mode (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the layer is quantized.
force_dequant (:obj:`str`, `optional`, defaults to :obj:`"none"`):
Force dequantize the layer if either "softmax" or "nonlinear" is given.
"""
def __init__(self, output_bit, quant_mode=False, force_dequant="none"):
super().__init__()
self.output_bit = output_bit
self.max_bit = 32
self.quant_mode = quant_mode
if force_dequant in ["nonlinear", "softmax"]:
logger.info("Force dequantize softmax")
self.quant_mode = False
self.act = QuantAct(16, quant_mode=self.quant_mode)
self.x0 = -0.6931 # -ln2
self.const = 30 # dummy integer constant
self.coef = [0.35815147, 0.96963238, 1.0] # ax**2 + bx + c
self.coef[1] /= self.coef[0]
self.coef[2] /= self.coef[0]
def int_polynomial(self, x_int, scaling_factor):
with torch.no_grad():
b_int = torch.floor(self.coef[1] / scaling_factor)
c_int = torch.floor(self.coef[2] / scaling_factor ** 2)
z = (x_int + b_int) * x_int + c_int
scaling_factor = self.coef[0] * scaling_factor ** 2
return z, scaling_factor
def int_exp(self, x_int, scaling_factor):
with torch.no_grad():
x0_int = torch.floor(self.x0 / scaling_factor)
x_int = torch.max(x_int, self.const * x0_int)
q = floor_ste.apply(x_int / x0_int)
r = x_int - x0_int * q
exp_int, exp_scaling_factor = self.int_polynomial(r, scaling_factor)
exp_int = torch.clamp(floor_ste.apply(exp_int * 2 ** (self.const - q)), min=0)
scaling_factor = exp_scaling_factor / 2 ** self.const
return exp_int, scaling_factor
def forward(self, x, scaling_factor):
if not self.quant_mode:
return nn.Softmax(dim=-1)(x), None
x_int = x / scaling_factor
x_int_max, _ = x_int.max(dim=-1, keepdim=True)
x_int = x_int - x_int_max
exp_int, exp_scaling_factor = self.int_exp(x_int, scaling_factor)
# Avoid overflow
exp, exp_scaling_factor = self.act(exp_int, exp_scaling_factor)
exp_int = exp / exp_scaling_factor
exp_int_sum = exp_int.sum(dim=-1, keepdim=True)
factor = floor_ste.apply(2 ** self.max_bit / exp_int_sum)
exp_int = floor_ste.apply(exp_int * factor / 2 ** (self.max_bit - self.output_bit))
scaling_factor = 1 / 2 ** self.output_bit
return exp_int * scaling_factor, scaling_factor
class IntLayerNorm(nn.Module):
"""
Quantized version of :obj:`torch.nn.LayerNorm`. Adds quantization-specific arguments on top of
:obj:`torch.nn.LayerNorm`.
Args:
output_bit (:obj:`int`, `optional`, defaults to :obj:`8`):
Bitwidth for the layer output activation.
quant_mode (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the layer is quantized.
force_dequant (:obj:`str`, `optional`, defaults to :obj:`"none"`):
Force dequantize the layer if either "layernorm" or "nonlinear" is given.
"""
def __init__(self, normalized_shape, eps, output_bit=8, quant_mode=False, force_dequant="none"):
super().__init__()
self.normalized_shape = normalized_shape
self.eps = eps
self.weight = nn.Parameter(torch.zeros(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.quant_mode = quant_mode
if force_dequant in ["nonlinear", "layernorm"]:
logger.info("Force dequantize layernorm")
self.quant_mode = False
self.register_buffer("shift", torch.zeros(1))
self.output_bit = output_bit
self.max_bit = 32
self.dim_sqrt = None
self.activation = QuantAct(self.output_bit, quant_mode=self.quant_mode)
def set_shift(self, y_int):
with torch.no_grad():
y_sq_int = y_int ** 2
var_int = torch.sum(y_sq_int, axis=2, keepdim=True)
shift = (torch.log2(torch.sqrt(var_int / 2 ** self.max_bit)).ceil()).max()
shift_old = self.shift
self.shift = torch.max(self.shift, shift)
logger.info(f"Dynamic shift adjustment: {int(shift_old)} -> {int(self.shift)}")
def overflow_fallback(self, y_int):
"""
This fallback function is called when overflow is detected during training time, and adjusts the `self.shift`
to avoid overflow in the subsequent runs.
"""
self.set_shift(y_int) # adjusts `self.shift`
y_int_shifted = floor_ste.apply(y_int / 2 ** self.shift)
y_sq_int = y_int_shifted ** 2
var_int = torch.sum(y_sq_int, axis=2, keepdim=True)
return var_int
def forward(self, x, scaling_factor=None):
if not self.quant_mode:
mean = x.mean(axis=2, keepdim=True)
y = x - mean
var = torch.mean(y ** 2, axis=2, keepdim=True)
x = y / torch.sqrt(self.eps + var)
x = x * self.weight + self.bias
return x, None
# compute sqrt of the feature dimension if it is the first run
if self.dim_sqrt is None:
n = torch.tensor(x.shape[2], dtype=torch.float)
self.dim_sqrt = torch.sqrt(n).to(x.device)
# Normalization: computes mean and variance(std)
x_int = x / scaling_factor
mean_int = round_ste.apply(x_int.mean(axis=2, keepdim=True))
y_int = x_int - mean_int
y_int_shifted = floor_ste.apply(y_int / 2 ** self.shift)
y_sq_int = y_int_shifted ** 2
var_int = torch.sum(y_sq_int, axis=2, keepdim=True)
# overflow handling in training time
if self.training:
# if overflow is detected
if var_int.max() >= 2 ** self.max_bit:
var_int = self.overflow_fallback(y_int)
assert var_int.max() < 2 ** self.max_bit + 0.1, (
"Error detected in overflow handling: "
"`var_int` exceeds `self.max_bit` (the maximum possible bit width)"
)
# To be replaced with integer-sqrt kernel that produces the same output
std_int = floor_ste.apply(torch.sqrt(var_int)) * 2 ** self.shift
factor = floor_ste.apply(2 ** 31 / std_int)
y_int = floor_ste.apply(y_int * factor / 2)
scaling_factor = self.dim_sqrt / 2 ** 30
# scaling and shifting
bias = self.bias.data.detach() / (self.weight.data.detach())
bias_int = floor_ste.apply(bias / scaling_factor)
y_int = y_int + bias_int
scaling_factor = scaling_factor * self.weight
x = y_int * scaling_factor
return x, scaling_factor
def get_percentile_min_max(input, lower_percentile, upper_percentile, output_tensor=False):
"""
Calculate the percentile max and min values in a given tensor
Args:
input (:obj:`torch.Tensor`):
The target tensor to calculate percentile max and min.
lower_percentile (:obj:`float`):
If 0.1, means we return the value of the smallest 0.1% value in the tensor as percentile min.
upper_percentile (:obj:`float`):
If 99.9, means we return the value of the largest 0.1% value in the tensor as percentile max.
output_tensor (:obj:`bool`, `optional`, defaults to :obj:`False`):
If True, this function returns tensors, otherwise it returns values.
Returns:
:obj:`Tuple(torch.Tensor, torch.Tensor)`: Percentile min and max value of `input`
"""
input_length = input.shape[0]
lower_index = round(input_length * (1 - lower_percentile * 0.01))
upper_index = round(input_length * upper_percentile * 0.01)
upper_bound = torch.kthvalue(input, k=upper_index).values
if lower_percentile == 0:
lower_bound = upper_bound * 0
# lower_index += 1
else:
lower_bound = -torch.kthvalue(-input, k=lower_index).values
if not output_tensor:
lower_bound = lower_bound.item()
upper_bound = upper_bound.item()
return lower_bound, upper_bound
def linear_quantize(input, scale, zero_point, inplace=False):
"""
Quantize single-precision input tensor to integers with the given scaling factor and zeropoint.
Args:
input (:obj:`torch.Tensor`):
Single-precision input tensor to be quantized.
scale (:obj:`torch.Tensor`):
Scaling factor for quantization.
zero_pint (:obj:`torch.Tensor`):
Shift for quantization.
inplace (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to compute inplace or not.
Returns:
:obj:`torch.Tensor`: Linearly quantized value of `input` according to `scale` and `zero_point`.
"""
# reshape scale and zeropoint for convolutional weights and activation
if len(input.shape) == 4:
scale = scale.view(-1, 1, 1, 1)
zero_point = zero_point.view(-1, 1, 1, 1)
# reshape scale and zeropoint for linear weights
elif len(input.shape) == 2:
scale = scale.view(-1, 1)
zero_point = zero_point.view(-1, 1)
else:
scale = scale.view(-1)
zero_point = zero_point.view(-1)
# quantized = float / scale + zero_point
if inplace:
input.mul_(1.0 / scale).add_(zero_point).round_()
return input
return torch.round(1.0 / scale * input + zero_point)
def symmetric_linear_quantization_params(num_bits, saturation_min, saturation_max, per_channel=False):
"""
Compute the scaling factor with the given quantization range for symmetric quantization.
Args:
saturation_min (:obj:`torch.Tensor`):
Lower bound for quantization range.
saturation_max (:obj:`torch.Tensor`):
Upper bound for quantization range.
per_channel (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to or not use channel-wise quantization.
Returns:
:obj:`torch.Tensor`: Scaling factor that linearly quantizes the given range between `saturation_min` and
`saturation_max`.
"""
# in this part, we do not need any gradient computation,
# in order to enforce this, we put torch.no_grad()
with torch.no_grad():
n = 2 ** (num_bits - 1) - 1
if per_channel:
scale, _ = torch.max(torch.stack([saturation_min.abs(), saturation_max.abs()], dim=1), dim=1)
scale = torch.clamp(scale, min=1e-8) / n
else:
scale = max(saturation_min.abs(), saturation_max.abs())
scale = torch.clamp(scale, min=1e-8) / n
return scale
class SymmetricQuantFunction(Function):
"""
Class to quantize the given floating-point values using symmetric quantization with given range and bitwidth.
"""
@staticmethod
def forward(ctx, x, k, percentile_mode, scale):
"""
Args:
x (:obj:`torch.Tensor`):
Floating point tensor to be quantized.
k (:obj:`int`):
Quantization bitwidth.
percentile_mode (:obj:`bool`):
Whether or not to use percentile calibration.
scale (:obj:`torch.Tensor`):
Pre-calculated scaling factor for `x`. Note that the current implementation of SymmetricQuantFunction
requires pre-calculated scaling factor.
Returns:
:obj:`torch.Tensor`: Symmetric-quantized value of `input`.
"""
zero_point = torch.tensor(0.0).to(scale.device)
n = 2 ** (k - 1) - 1
new_quant_x = linear_quantize(x, scale, zero_point, inplace=False)
new_quant_x = torch.clamp(new_quant_x, -n, n - 1)
ctx.scale = scale
return new_quant_x
@staticmethod
def backward(ctx, grad_output):
scale = ctx.scale
if len(grad_output.shape) == 4:
scale = scale.view(-1, 1, 1, 1)
# reshape scale and zeropoint for linear weights
elif len(grad_output.shape) == 2:
scale = scale.view(-1, 1)
else:
scale = scale.view(-1)
return grad_output.clone() / scale, None, None, None, None
class floor_ste(Function):
"""
Straight-through Estimator(STE) for torch.floor()
"""
@staticmethod
def forward(ctx, x):
return torch.floor(x)
@staticmethod
def backward(ctx, grad_output):
return grad_output.clone()
class round_ste(Function):
"""
Straight-through Estimator(STE) for torch.round()
"""
@staticmethod
def forward(ctx, x):
return torch.round(x)
@staticmethod
def backward(ctx, grad_output):
return grad_output.clone()
def batch_frexp(inputs, max_bit=31):
"""
Decompose the scaling factor into mantissa and twos exponent.
Args:
scaling_factor (:obj:`torch.Tensor`):
Target scaling factor to decompose.
Returns:
:obj:``Tuple(torch.Tensor, torch.Tensor)`: mantisa and exponent
"""
shape_of_input = inputs.size()
# trans the input to be a 1-d tensor
inputs = inputs.view(-1)
output_m, output_e = np.frexp(inputs.cpu().numpy())
tmp_m = []
for m in output_m:
int_m_shifted = int(
decimal.Decimal(m * (2 ** max_bit)).quantize(decimal.Decimal("1"), rounding=decimal.ROUND_HALF_UP)
)
tmp_m.append(int_m_shifted)
output_m = np.array(tmp_m)
output_e = float(max_bit) - output_e
return (
torch.from_numpy(output_m).to(inputs.device).view(shape_of_input),
torch.from_numpy(output_e).to(inputs.device).view(shape_of_input),
)
class FixedPointMul(Function):
"""
Function to perform fixed-point arithmetic that can match integer arithmetic on hardware.
Args:
pre_act (:obj:`torch.Tensor`):
Input tensor.
pre_act_scaling_factor (:obj:`torch.Tensor`):
Scaling factor of the input tensor `pre_act`.
bit_num (:obj:`int`):
Quantization bitwidth.
z_scaling_factor (:obj:`torch.Tensor`):
Scaling factor of the output tensor.
identity (:obj:`torch.Tensor`, `optional`):
Identity tensor, if exists.
identity_scaling_factor (:obj:`torch.Tensor`, `optional`):
Scaling factor of the identity tensor `identity`, if exists.
Returns:
:obj:`torch.Tensor`: Output tensor(`pre_act` if `identity` is not given, otherwise the addition of `pre_act`
and `identity`), whose scale is rescaled to `z_scaling_factor`.
"""
@staticmethod
def forward(
ctx,
pre_act,
pre_act_scaling_factor,
bit_num,
z_scaling_factor,
identity=None,
identity_scaling_factor=None,
):
if len(pre_act_scaling_factor.shape) == 3:
reshape = lambda x: x # noqa: E731
else:
reshape = lambda x: x.view(1, 1, -1) # noqa: E731
ctx.identity = identity
n = 2 ** (bit_num - 1) - 1
with torch.no_grad():
pre_act_scaling_factor = reshape(pre_act_scaling_factor)
if identity is not None:
identity_scaling_factor = reshape(identity_scaling_factor)
ctx.z_scaling_factor = z_scaling_factor
z_int = torch.round(pre_act / pre_act_scaling_factor)
_A = pre_act_scaling_factor.type(torch.double)
_B = (z_scaling_factor.type(torch.float)).type(torch.double)
new_scale = _A / _B
new_scale = reshape(new_scale)
m, e = batch_frexp(new_scale)
output = z_int.type(torch.double) * m.type(torch.double)
output = torch.round(output / (2.0 ** e))
if identity is not None:
# needs addition of identity activation
wx_int = torch.round(identity / identity_scaling_factor)
_A = identity_scaling_factor.type(torch.double)
_B = (z_scaling_factor.type(torch.float)).type(torch.double)
new_scale = _A / _B
new_scale = reshape(new_scale)
m1, e1 = batch_frexp(new_scale)
output1 = wx_int.type(torch.double) * m1.type(torch.double)
output1 = torch.round(output1 / (2.0 ** e1))
output = output1 + output
return torch.clamp(output.type(torch.float), -n - 1, n)
@staticmethod
def backward(ctx, grad_output):
identity_grad = None
if ctx.identity is not None:
identity_grad = grad_output.clone() / ctx.z_scaling_factor
return grad_output.clone() / ctx.z_scaling_factor, None, None, None, None, identity_grad, None
|