File size: 69,660 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
# coding=utf-8
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TensorFlow Hubert model. """
import inspect
import warnings
from typing import Any, Dict, Optional, Tuple, Union

import numpy as np
import tensorflow as tf

from ...activations_tf import get_tf_activation
from ...file_utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    replace_return_docstrings,
)
from ...modeling_tf_outputs import TFBaseModelOutput, TFCausalLMOutput
from ...modeling_tf_utils import (
    TFPreTrainedModel,
    booleans_processing,
    get_initializer,
    keras_serializable,
    shape_list,
)
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_hubert import HubertConfig


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "HubertConfig"

TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "facebook/hubert-base-ls960",
    # See all Hubert models at https://huggingface.co/models?filter=hubert
]

LARGE_NEGATIVE = -1e8


# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.input_values_processing
def input_values_processing(func, config, input_values, **kwargs):
    """
    Process the input of each TensorFlow model including the booleans. In case of a list of symbolic inputs, each input
    has to be named accordingly to the parameters name, i.e. :obj:`input_values = tf.keras.Input(shape=(128,),
    dtype='float32', name="input_values")` otherwise the order of the tensors will not be guaranteed during the
    training.

    Args:
        func (:obj:`callable`):
            The callable function of the TensorFlow model.
        config (:class:`~transformers.PretrainedConfig`):
            The config of the running model.
        **kwargs:
            The inputs of the model.

    Returns:
        Two lists, one for the missing layers, and another one for the unexpected layers.
    """
    signature = dict(inspect.signature(func).parameters)
    signature.pop("kwargs", None)
    signature.pop("self", None)
    parameter_names = list(signature.keys())
    output = {}
    allowed_types = (tf.Tensor, bool, int, ModelOutput, tuple, list, dict, np.ndarray)

    for k, v in kwargs.items():
        if isinstance(v, allowed_types) or v is None:
            output[k] = v
        else:
            raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.")

    if isinstance(input_values, (tuple, list)):
        for i, input in enumerate(input_values):
            # EagerTensors don't allow to use the .name property so we check for a real Tensor
            if type(input) == tf.Tensor:
                # Tensor names have always the pattern `name:id` then we check only the
                # `name` part
                tensor_name = input.name.split(":")[0]

                if tensor_name in parameter_names:
                    output[tensor_name] = input
                else:
                    output[parameter_names[i]] = input
            elif isinstance(input, allowed_types) or input is None:
                output[parameter_names[i]] = input
            else:
                raise ValueError(
                    f"Data of type {type(input)} is not allowed only {allowed_types} is accepted for {parameter_names[i]}."
                )
    elif isinstance(input_values, (dict, BatchEncoding)):
        if "inputs" in input_values:
            warnings.warn(
                "The `inputs` argument is deprecated and will be removed in a future version, use `input_values` instead.",
                FutureWarning,
            )

            output["input_values"] = input_values.pop("inputs")

        if "decoder_cached_states" in input_values:
            warnings.warn(
                "The `decoder_cached_states` argument is deprecated and will be removed in a future version, use `past_key_values` instead.",
                FutureWarning,
            )
            output["past_key_values"] = input_values.pop("decoder_cached_states")

        for k, v in dict(input_values).items():
            if isinstance(v, allowed_types) or v is None:
                output[k] = v
            elif k not in parameter_names and "args" not in parameter_names:
                logger.warning(
                    f"The parameter {k} does not belongs to the parameter list {parameter_names} and will be ignored."
                )
                continue
            else:
                raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.")
    else:
        if isinstance(input_values, tf.Tensor) or input_values is None:
            output[parameter_names[0]] = input_values
        else:
            raise ValueError(
                f"Data of type {type(input_values)} is not allowed only {allowed_types} is accepted for {parameter_names[0]}."
            )

    for name in parameter_names:
        if name not in list(output.keys()) and name != "args":
            output[name] = kwargs.pop(name, signature[name].default)

    # When creating a SavedModel TF calls the method with LayerCall.__call__(args, **kwargs)
    # So to respect the proper output we have to add this exception
    if "args" in output:
        if output["args"] is not None and type(output["args"]) == tf.Tensor:
            tensor_name = output["args"].name.split(":")[0]
            output[tensor_name] = output["args"]
        else:
            # `args` in this case is always the first parameter, then `input_values`
            output["input_values"] = output["args"]

        del output["args"]

    if "kwargs" in output:
        del output["kwargs"]

    boolean_dict = {
        k: v
        for k, v in output.items()
        if k in ["return_dict", "output_attentions", "output_hidden_states", "use_cache"]
    }

    output.update(booleans_processing(config=config, **boolean_dict))

    return output


# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2._sample_without_replacement
def _sample_without_replacement(distribution, num_samples):
    """
    Categorical sampling without replacement is currently not implemented. The gumbel-max trick will do for now - see
    https://github.com/tensorflow/tensorflow/issues/9260 for more info
    """
    z = -tf.math.log(tf.random.uniform(shape_list(distribution), 0, 1))
    _, indices = tf.nn.top_k(distribution + z, num_samples)
    return indices


# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2._scatter_values_on_batch_indices
def _scatter_values_on_batch_indices(values, batch_indices, output_shape):
    """
    Scatter function as in PyTorch with indices in format (batch_dim, indixes)
    """
    indices_shape = shape_list(batch_indices)
    # broadcast batch dim to indices_shape
    broad_casted_batch_dims = tf.reshape(
        tf.broadcast_to(tf.expand_dims(tf.range(indices_shape[0]), axis=-1), indices_shape), [1, -1]
    )
    # transform batch_indices to pair_indices
    pair_indices = tf.transpose(tf.concat([broad_casted_batch_dims, tf.reshape(batch_indices, [1, -1])], 0))
    # scatter values to pair indices
    return tf.scatter_nd(pair_indices, tf.reshape(values, [-1]), output_shape)


# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2._compute_mask_indices
def _compute_mask_indices(
    shape: Tuple[int, int],
    mask_prob: float,
    mask_length: int,
    min_masks: int = 0,
) -> tf.Tensor:
    """
    Computes random mask spans for a given shape

    Args:
        shape: the the shape for which to compute masks.
            should be of size 2 where first element is batch size and 2nd is timesteps
        attention_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
        mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
            number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
            however due to overlaps, the actual number will be smaller (unless no_overlap is True)
        mask_length: size of the mask
        min_masks: minimum number of masked spans

    Adapted from `fairseq's data_utils.py
    <https://github.com/pytorch/fairseq/blob/e0788f7007a8473a76db573985031f3c94201e79/fairseq/data/data_utils.py#L376>`__.
    """
    batch_size, sequence_length = shape

    if mask_length < 1:
        raise ValueError("`mask_length` has to be bigger than 0.")

    if mask_length > sequence_length:
        raise ValueError(
            f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
        )
    # compute number of masked spans in batch
    num_masked_spans = int(mask_prob * sequence_length / mask_length + tf.random.uniform((1,)))
    num_masked_spans = max(num_masked_spans, min_masks)

    # make sure num masked indices <= sequence_length
    if num_masked_spans * mask_length > sequence_length:
        num_masked_spans = sequence_length // mask_length

    # SpecAugment mask to fill
    spec_aug_mask = tf.zeros((batch_size, sequence_length), dtype=tf.int32)

    # uniform distribution to sample from, make sure that offset samples are < sequence_length
    uniform_dist = tf.ones((batch_size, sequence_length - (mask_length - 1)))

    # get random indices to mask
    spec_aug_mask_idxs = _sample_without_replacement(uniform_dist, num_masked_spans)

    # expand masked indices to masked spans
    spec_aug_mask_idxs = tf.expand_dims(spec_aug_mask_idxs, -1)
    spec_aug_mask_idxs = tf.tile(spec_aug_mask_idxs, (1, 1, mask_length))
    spec_aug_mask_idxs = tf.reshape(spec_aug_mask_idxs, (batch_size, num_masked_spans * mask_length))

    offsets = tf.range(mask_length)[tf.newaxis, tf.newaxis, :]
    offsets = tf.tile(offsets, (batch_size, num_masked_spans, 1))
    offsets = tf.reshape(offsets, (batch_size, num_masked_spans * mask_length))

    spec_aug_mask_idxs = spec_aug_mask_idxs + offsets

    # scatter indices to mask
    spec_aug_mask = _scatter_values_on_batch_indices(
        tf.ones_like(spec_aug_mask_idxs), spec_aug_mask_idxs, spec_aug_mask.shape
    )

    return tf.cast(spec_aug_mask, tf.float32)


# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None, past_key_values_length: int = 0):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    src_len = shape_list(mask)[1]
    tgt_len = tgt_len if tgt_len is not None else src_len
    one_cst = tf.constant(1.0)
    mask = tf.cast(mask, dtype=one_cst.dtype)
    expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))

    return (one_cst - expanded_mask) * LARGE_NEGATIVE


# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2GroupNorm with Wav2Vec2->Hubert
class TFHubertGroupNorm(tf.keras.layers.Layer):
    """
    From tensorflow-addons https://www.tensorflow.org/addons/api_docs/python/tfa/layers/GroupNormalization
    """

    def __init__(
        self,
        groups: int = 32,
        axis: int = -1,
        epsilon: float = 1e-3,
        center: bool = True,
        scale: bool = True,
        beta_initializer: tf.keras.initializers.Initializer = "zeros",
        gamma_initializer: tf.keras.initializers.Initializer = "ones",
        beta_regularizer: tf.keras.regularizers.Regularizer = None,
        gamma_regularizer: tf.keras.regularizers.Regularizer = None,
        beta_constraint: tf.keras.constraints.Constraint = None,
        gamma_constraint: tf.keras.constraints.Constraint = None,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.supports_masking = True
        self.groups = groups
        self.axis = axis
        self.epsilon = epsilon
        self.center = center
        self.scale = scale
        self.beta_initializer = tf.keras.initializers.get(beta_initializer)
        self.gamma_initializer = tf.keras.initializers.get(gamma_initializer)
        self.beta_regularizer = tf.keras.regularizers.get(beta_regularizer)
        self.gamma_regularizer = tf.keras.regularizers.get(gamma_regularizer)
        self.beta_constraint = tf.keras.constraints.get(beta_constraint)
        self.gamma_constraint = tf.keras.constraints.get(gamma_constraint)
        self._check_axis()

    def build(self, input_shape):

        self._check_if_input_shape_is_none(input_shape)
        self._set_number_of_groups_for_instance_norm(input_shape)
        self._check_size_of_dimensions(input_shape)
        self._create_input_spec(input_shape)

        self._add_gamma_weight(input_shape)
        self._add_beta_weight(input_shape)
        self.built = True
        super().build(input_shape)

    def call(self, inputs):

        input_shape = tf.keras.backend.int_shape(inputs)
        tensor_input_shape = tf.shape(inputs)

        reshaped_inputs, group_shape = self._reshape_into_groups(inputs, input_shape, tensor_input_shape)

        normalized_inputs = self._apply_normalization(reshaped_inputs, input_shape)

        is_instance_norm = (input_shape[self.axis] // self.groups) == 1
        if not is_instance_norm:
            outputs = tf.reshape(normalized_inputs, tensor_input_shape)
        else:
            outputs = normalized_inputs

        return outputs

    def get_config(self):
        config = {
            "groups": self.groups,
            "axis": self.axis,
            "epsilon": self.epsilon,
            "center": self.center,
            "scale": self.scale,
            "beta_initializer": tf.keras.initializers.serialize(self.beta_initializer),
            "gamma_initializer": tf.keras.initializers.serialize(self.gamma_initializer),
            "beta_regularizer": tf.keras.regularizers.serialize(self.beta_regularizer),
            "gamma_regularizer": tf.keras.regularizers.serialize(self.gamma_regularizer),
            "beta_constraint": tf.keras.constraints.serialize(self.beta_constraint),
            "gamma_constraint": tf.keras.constraints.serialize(self.gamma_constraint),
        }
        base_config = super().get_config()
        return {**base_config, **config}

    def compute_output_shape(self, input_shape):
        return input_shape

    def _reshape_into_groups(self, inputs, input_shape, tensor_input_shape):

        group_shape = [tensor_input_shape[i] for i in range(len(input_shape))]
        is_instance_norm = (input_shape[self.axis] // self.groups) == 1
        if not is_instance_norm:
            group_shape[self.axis] = input_shape[self.axis] // self.groups
            group_shape.insert(self.axis, self.groups)
            group_shape = tf.stack(group_shape)
            reshaped_inputs = tf.reshape(inputs, group_shape)
            return reshaped_inputs, group_shape
        else:
            return inputs, group_shape

    def _apply_normalization(self, reshaped_inputs, input_shape):

        group_shape = tf.keras.backend.int_shape(reshaped_inputs)
        group_reduction_axes = list(range(1, len(group_shape)))
        is_instance_norm = (input_shape[self.axis] // self.groups) == 1
        if not is_instance_norm:
            axis = -2 if self.axis == -1 else self.axis - 1
        else:
            axis = -1 if self.axis == -1 else self.axis - 1
        group_reduction_axes.pop(axis)

        mean, variance = tf.nn.moments(reshaped_inputs, group_reduction_axes, keepdims=True)

        gamma, beta = self._get_reshaped_weights(input_shape)
        normalized_inputs = tf.nn.batch_normalization(
            reshaped_inputs,
            mean=mean,
            variance=variance,
            scale=gamma,
            offset=beta,
            variance_epsilon=self.epsilon,
        )
        return normalized_inputs

    def _get_reshaped_weights(self, input_shape):
        broadcast_shape = self._create_broadcast_shape(input_shape)
        gamma = None
        beta = None
        if self.scale:
            gamma = tf.reshape(self.gamma, broadcast_shape)

        if self.center:
            beta = tf.reshape(self.beta, broadcast_shape)
        return gamma, beta

    def _check_if_input_shape_is_none(self, input_shape):
        dim = input_shape[self.axis]
        if dim is None:
            raise ValueError(
                "Axis " + str(self.axis) + " of "
                "input tensor should have a defined dimension "
                "but the layer received an input with shape " + str(input_shape) + "."
            )

    def _set_number_of_groups_for_instance_norm(self, input_shape):
        dim = input_shape[self.axis]

        if self.groups == -1:
            self.groups = dim

    def _check_size_of_dimensions(self, input_shape):

        dim = input_shape[self.axis]
        if dim < self.groups:
            raise ValueError(
                "Number of groups (" + str(self.groups) + ") cannot be "
                "more than the number of channels (" + str(dim) + ")."
            )

        if dim % self.groups != 0:
            raise ValueError(
                "Number of groups (" + str(self.groups) + ") must be a "
                "multiple of the number of channels (" + str(dim) + ")."
            )

    def _check_axis(self):

        if self.axis == 0:
            raise ValueError(
                "You are trying to normalize your batch axis. Do you want to "
                "use tf.layer.batch_normalization instead"
            )

    def _create_input_spec(self, input_shape):

        dim = input_shape[self.axis]
        self.input_spec = tf.keras.layers.InputSpec(ndim=len(input_shape), axes={self.axis: dim})

    def _add_gamma_weight(self, input_shape):

        dim = input_shape[self.axis]
        shape = (dim,)

        if self.scale:
            self.gamma = self.add_weight(
                shape=shape,
                name="gamma",
                initializer=self.gamma_initializer,
                regularizer=self.gamma_regularizer,
                constraint=self.gamma_constraint,
            )
        else:
            self.gamma = None

    def _add_beta_weight(self, input_shape):

        dim = input_shape[self.axis]
        shape = (dim,)

        if self.center:
            self.beta = self.add_weight(
                shape=shape,
                name="beta",
                initializer=self.beta_initializer,
                regularizer=self.beta_regularizer,
                constraint=self.beta_constraint,
            )
        else:
            self.beta = None

    def _create_broadcast_shape(self, input_shape):
        broadcast_shape = [1] * len(input_shape)
        is_instance_norm = (input_shape[self.axis] // self.groups) == 1
        if not is_instance_norm:
            broadcast_shape[self.axis] = input_shape[self.axis] // self.groups
            broadcast_shape.insert(self.axis, self.groups)
        else:
            broadcast_shape[self.axis] = self.groups
        return broadcast_shape


# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2WeightNormConv1D with Wav2Vec2->Hubert
class TFHubertWeightNormConv1D(tf.keras.layers.Conv1D):
    """Adapted from https://www.tensorflow.org/probability/api_docs/python/tfp/layers/weight_norm/WeightNorm"""

    def __init__(self, filters, kernel_size, groups, explicit_padding, **kwargs):
        super().__init__(
            filters=filters,
            kernel_size=kernel_size,
            groups=groups,
            padding="valid",
            use_bias=True,
            bias_initializer="he_normal",
            **kwargs,
        )
        self.explicit_padding = explicit_padding
        self.filter_axis = 2
        self.initialized = False
        self.kernel_norm_axes = tf.constant([0, 1])

    def _init_norm(self):
        """Set the norm of the weight vector."""
        kernel_norm = tf.sqrt(tf.reduce_sum(tf.square(self.weight_v), axis=self.kernel_norm_axes))
        self.weight_g.assign(kernel_norm[:, tf.newaxis, tf.newaxis])

    def _normalize_kernel(self):
        """Generate normalized weights."""
        kernel = tf.nn.l2_normalize(self.weight_v, axis=self.kernel_norm_axes) * tf.transpose(self.weight_g)
        self.kernel = tf.transpose(kernel)

    def build(self, input_shape):
        if not self.built:
            super().build(input_shape)
            self.kernel = tf.Variable(tf.transpose(self.kernel), name="weight_v", trainable=True)
            self.weight_v = self.kernel

            self.weight_g = self.add_weight(
                name="weight_g",
                shape=(int(self.weight_v.shape[self.filter_axis]), 1, 1),
                initializer="ones",
                dtype=self.weight_v.dtype,
                trainable=True,
            )
            self.bias = self.add_weight(name="bias", shape=(self.filters,), initializer="zeros", trainable=True)

    def call(self, inputs):
        if not self.initialized:
            self._init_norm()
            self.initialized = True

        self._normalize_kernel()

        padded_inputs = tf.pad(inputs, ((0, 0), (self.explicit_padding, self.explicit_padding), (0, 0)))
        output = super().call(padded_inputs)

        return output


# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2NoLayerNormConvLayer with Wav2Vec2->Hubert
class TFHubertNoLayerNormConvLayer(tf.keras.layers.Layer):
    def __init__(self, config: HubertConfig, layer_id: int = 0, **kwargs: Any) -> None:
        super().__init__(**kwargs)
        self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1
        self.out_conv_dim = config.conv_dim[layer_id]

        self.conv = tf.keras.layers.Conv1D(
            filters=self.out_conv_dim,
            kernel_size=config.conv_kernel[layer_id],
            strides=config.conv_stride[layer_id],
            use_bias=config.conv_bias,
            name="conv",
        )
        self.activation = get_tf_activation(config.feat_extract_activation)

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        hidden_states = self.conv(hidden_states)
        hidden_states = self.activation(hidden_states)
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2LayerNormConvLayer with Wav2Vec2->Hubert
class TFHubertLayerNormConvLayer(tf.keras.layers.Layer):
    def __init__(self, config: HubertConfig, layer_id: int = 0, **kwargs: Any) -> None:
        super().__init__(**kwargs)
        self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1
        self.out_conv_dim = config.conv_dim[layer_id]

        self.conv = tf.keras.layers.Conv1D(
            filters=self.out_conv_dim,
            kernel_size=config.conv_kernel[layer_id],
            strides=config.conv_stride[layer_id],
            use_bias=config.conv_bias,
            name="conv",
        )
        self.layer_norm = tf.keras.layers.LayerNormalization(name="layer_norm", epsilon=config.layer_norm_eps)
        self.activation = get_tf_activation(config.feat_extract_activation)

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        hidden_states = self.conv(hidden_states)
        hidden_states = self.layer_norm(hidden_states)
        hidden_states = self.activation(hidden_states)
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2GroupNormConvLayer with Wav2Vec2->Hubert
class TFHubertGroupNormConvLayer(tf.keras.layers.Layer):
    def __init__(self, config: HubertConfig, layer_id: int = 0, **kwargs: Any) -> None:
        super().__init__(**kwargs)
        self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1
        self.out_conv_dim = config.conv_dim[layer_id]

        self.conv = tf.keras.layers.Conv1D(
            filters=self.out_conv_dim,
            kernel_size=config.conv_kernel[layer_id],
            strides=config.conv_stride[layer_id],
            use_bias=config.conv_bias,
            name="conv",
        )
        self.activation = get_tf_activation(config.feat_extract_activation)
        self.layer_norm = TFHubertGroupNorm(groups=self.out_conv_dim, epsilon=config.layer_norm_eps, name="layer_norm")

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        hidden_states = self.conv(hidden_states)
        hidden_states = self.layer_norm(hidden_states)
        hidden_states = self.activation(hidden_states)
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2PositionalConvEmbedding with Wav2Vec2->Hubert
class TFHubertPositionalConvEmbedding(tf.keras.layers.Layer):
    def __init__(self, config: HubertConfig, **kwargs: Any) -> None:
        super().__init__(**kwargs)
        self.conv = TFHubertWeightNormConv1D(
            filters=config.hidden_size,
            kernel_size=config.num_conv_pos_embeddings,
            groups=config.num_conv_pos_embedding_groups,
            explicit_padding=config.num_conv_pos_embeddings // 2,
            name="conv",
        )
        self.padding = TFHubertSamePadLayer(config.num_conv_pos_embeddings)
        self.activation = get_tf_activation(config.feat_extract_activation)

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        hidden_states = self.conv(hidden_states)
        hidden_states = self.padding(hidden_states)
        hidden_states = self.activation(hidden_states)
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2SamePadLayer with Wav2Vec2->Hubert
class TFHubertSamePadLayer(tf.keras.layers.Layer):
    def __init__(self, num_conv_pos_embeddings, **kwargs):
        super().__init__(**kwargs)
        self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0

    def call(self, hidden_states):
        if self.num_pad_remove > 0:
            hidden_states = hidden_states[:, : -self.num_pad_remove, :]
        return hidden_states


class TFHubertFeatureExtractor(tf.keras.layers.Layer):
    def __init__(self, config: HubertConfig, **kwargs: Any) -> None:
        super().__init__(**kwargs)

        if config.feat_extract_norm == "group":
            conv_layers = [TFHubertGroupNormConvLayer(config, layer_id=0, name=f"conv_layers.{0}")] + [
                TFHubertNoLayerNormConvLayer(config, layer_id=i + 1, name=f"conv_layers.{i+1}")
                for i in range(config.num_feat_extract_layers - 1)
            ]
        elif config.feat_extract_norm == "layer":
            conv_layers = [
                TFHubertLayerNormConvLayer(config, layer_id=i, name=f"conv_layers.{i}")
                for i in range(config.num_feat_extract_layers)
            ]
        else:
            raise ValueError(
                f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
            )
        self.conv_layers = conv_layers

    def call(self, input_values):
        hidden_states = tf.expand_dims(input_values, -1)
        for conv_layer in self.conv_layers:
            hidden_states = conv_layer(hidden_states)
        return hidden_states


class TFHubertFeatureProjection(tf.keras.layers.Layer):
    def __init__(self, config: HubertConfig, **kwargs):
        super().__init__(**kwargs)

        self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
        self.projection = tf.keras.layers.Dense(
            units=config.hidden_size,
            kernel_initializer=get_initializer(config.initializer_range),
            bias_initializer="zeros",
            name="projection",
        )
        self.dropout = tf.keras.layers.Dropout(rate=config.feat_proj_dropout)

    def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
        hidden_states = self.layer_norm(hidden_states)
        hidden_states = self.projection(hidden_states)
        hidden_states = self.dropout(hidden_states, training=training)
        return hidden_states


# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with TFBart->TFHubert
class TFHubertAttention(tf.keras.layers.Layer):
    """Multi-headed attention from "Attention Is All You Need"""

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        is_decoder: bool = False,
        bias: bool = True,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.embed_dim = embed_dim

        self.num_heads = num_heads
        self.dropout = tf.keras.layers.Dropout(dropout)
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
        self.scaling = self.head_dim ** -0.5
        self.is_decoder = is_decoder

        self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
        self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
        self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
        self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")

    def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
        return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))

    def call(
        self,
        hidden_states: tf.Tensor,
        key_value_states: Optional[tf.Tensor] = None,
        past_key_value: Optional[Tuple[Tuple[tf.Tensor]]] = None,
        attention_mask: Optional[tf.Tensor] = None,
        layer_head_mask: Optional[tf.Tensor] = None,
        training=False,
    ) -> Tuple[tf.Tensor, Optional[tf.Tensor]]:
        """Input shape: Batch x Time x Channel"""

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None
        bsz, tgt_len, embed_dim = shape_list(hidden_states)

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scaling
        # get key, value proj
        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        elif is_cross_attention:
            # cross_attentions
            key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            # reuse k, v, self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = tf.concat([past_key_value[0], key_states], axis=2)
            value_states = tf.concat([past_key_value[1], value_states], axis=2)
        else:
            # self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_states, value_states)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
        key_states = tf.reshape(key_states, proj_shape)
        value_states = tf.reshape(value_states, proj_shape)

        src_len = shape_list(key_states)[1]
        attn_weights = tf.matmul(query_states, key_states, transpose_b=True)

        # The tf.debugging asserts are not compliant with XLA then they
        # have to be disabled in other modes than eager.
        if tf.executing_eagerly():
            tf.debugging.assert_equal(
                shape_list(attn_weights),
                [bsz * self.num_heads, tgt_len, src_len],
                message=f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {shape_list(attn_weights)}",
            )

        if attention_mask is not None:
            # The tf.debugging asserts are not compliant with XLA then they
            # have to be disabled in other modes than eager.
            if tf.executing_eagerly():
                tf.debugging.assert_equal(
                    shape_list(attention_mask),
                    [bsz, 1, tgt_len, src_len],
                    message=f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {shape_list(attention_mask)}",
                )

            attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
            attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
            attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))

        attn_weights = tf.nn.softmax(attn_weights, axis=-1)

        if layer_head_mask is not None:
            # The tf.debugging asserts are not compliant with XLA then they
            # have to be disabled in other modes than eager.
            if tf.executing_eagerly():
                tf.debugging.assert_equal(
                    shape_list(layer_head_mask),
                    [self.num_heads],
                    message=f"Head mask for a single layer should be of size {(self.num_heads)}, but is {shape_list(layer_head_mask)}",
                )

            attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
                attn_weights, (bsz, self.num_heads, tgt_len, src_len)
            )
            attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))

        attn_probs = self.dropout(attn_weights, training=training)
        attn_output = tf.matmul(attn_probs, value_states)

        # The tf.debugging asserts are not compliant with XLA then they
        # have to be disabled in other modes than eager.
        if tf.executing_eagerly():
            tf.debugging.assert_equal(
                shape_list(attn_output),
                [bsz * self.num_heads, tgt_len, self.head_dim],
                message=f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {shape_list(attn_output)}",
            )

        attn_output = tf.transpose(
            tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
        )
        attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))

        attn_output = self.out_proj(attn_output)
        attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))

        return attn_output, attn_weights, past_key_value


# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2FeedForward with Wav2Vec2->Hubert
class TFHubertFeedForward(tf.keras.layers.Layer):
    def __init__(self, config: HubertConfig, **kwargs):
        super().__init__(**kwargs)

        self.intermediate_dropout = tf.keras.layers.Dropout(config.activation_dropout)

        self.intermediate_dense = tf.keras.layers.Dense(
            units=config.intermediate_size,
            kernel_initializer=get_initializer(config.initializer_range),
            bias_initializer="zeros",
            name="intermediate_dense",
        )
        self.intermediate_act_fn = get_tf_activation(config.hidden_act)

        self.output_dense = tf.keras.layers.Dense(
            units=config.hidden_size,
            kernel_initializer=get_initializer(config.initializer_range),
            bias_initializer="zeros",
            name="output_dense",
        )
        self.output_dropout = tf.keras.layers.Dropout(config.hidden_dropout)

    def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
        hidden_states = self.intermediate_dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        hidden_states = self.intermediate_dropout(hidden_states, training=training)

        hidden_states = self.output_dense(hidden_states)
        hidden_states = self.output_dropout(hidden_states, training=training)
        return hidden_states


# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2EncoderLayer with Wav2Vec2->Hubert
class TFHubertEncoderLayer(tf.keras.layers.Layer):
    def __init__(self, config: HubertConfig, **kwargs):
        super().__init__(**kwargs)
        self.attention = TFHubertAttention(
            embed_dim=config.hidden_size,
            num_heads=config.num_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=False,
            name="attention",
        )
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout)
        self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
        self.feed_forward = TFHubertFeedForward(config, name="feed_forward")
        self.final_layer_norm = tf.keras.layers.LayerNormalization(
            epsilon=config.layer_norm_eps, name="final_layer_norm"
        )

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: Optional[tf.Tensor] = None,
        output_attentions: Optional[bool] = False,
        training: bool = False,
    ) -> Tuple[tf.Tensor]:
        attn_residual = hidden_states
        hidden_states, attn_weights, _ = self.attention(
            hidden_states, attention_mask=attention_mask, training=training
        )
        hidden_states = self.dropout(hidden_states, training=training)
        hidden_states = attn_residual + hidden_states

        hidden_states = self.layer_norm(hidden_states)
        hidden_states = hidden_states + self.feed_forward(hidden_states)
        hidden_states = self.final_layer_norm(hidden_states)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2EncoderLayerStableLayerNorm with Wav2Vec2->Hubert
class TFHubertEncoderLayerStableLayerNorm(tf.keras.layers.Layer):
    def __init__(self, config: HubertConfig, **kwargs):
        super().__init__(**kwargs)
        self.attention = TFHubertAttention(
            embed_dim=config.hidden_size,
            num_heads=config.num_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=False,
            name="attention",
        )
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout)
        self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
        self.feed_forward = TFHubertFeedForward(config, name="feed_forward")
        self.final_layer_norm = tf.keras.layers.LayerNormalization(
            epsilon=config.layer_norm_eps, name="final_layer_norm"
        )

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: Optional[tf.Tensor] = None,
        output_attentions: Optional[bool] = False,
        training: bool = False,
    ) -> Tuple[tf.Tensor]:
        attn_residual = hidden_states
        hidden_states = self.layer_norm(hidden_states)
        hidden_states, attn_weights, _ = self.attention(
            hidden_states, attention_mask=attention_mask, training=training
        )
        hidden_states = self.dropout(hidden_states, training=training)
        hidden_states = attn_residual + hidden_states
        hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2Encoder with Wav2Vec2->Hubert
class TFHubertEncoder(tf.keras.layers.Layer):
    def __init__(self, config: HubertConfig, **kwargs):
        super().__init__(**kwargs)
        self.config = config
        self.pos_conv_embed = TFHubertPositionalConvEmbedding(config, name="pos_conv_embed")
        self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout)
        self.layer = [TFHubertEncoderLayer(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)]

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: Optional[tf.Tensor] = None,
        output_attentions: Optional[bool] = False,
        output_hidden_states: Optional[bool] = False,
        return_dict: Optional[bool] = True,
        training: Optional[bool] = False,
    ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        if attention_mask is not None:
            hidden_states = hidden_states * tf.expand_dims(attention_mask, -1)
            attention_mask = _expand_mask(attention_mask)
        else:
            attention_mask = None

        position_embeddings = self.pos_conv_embed(hidden_states)
        hidden_states = hidden_states + position_embeddings
        hidden_states = self.layer_norm(hidden_states)
        hidden_states = self.dropout(hidden_states, training=training)

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = np.random.uniform(0, 1)
            if training and (dropout_probability < self.config.layerdrop):  # skip the layer
                continue

            layer_outputs = layer_module(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                output_attentions=output_attentions,
                training=training,
            )
            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        # Add last layer
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
        return TFBaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


# Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2EncoderStableLayerNorm with Wav2Vec2->Hubert
class TFHubertEncoderStableLayerNorm(tf.keras.layers.Layer):
    def __init__(self, config: HubertConfig, **kwargs):
        super().__init__(**kwargs)
        self.config = config
        self.pos_conv_embed = TFHubertPositionalConvEmbedding(config, name="pos_conv_embed")
        self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
        self.dropout = tf.keras.layers.Dropout(config.hidden_dropout)
        self.layer = [
            TFHubertEncoderLayerStableLayerNorm(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)
        ]

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: Optional[tf.Tensor] = None,
        output_attentions: Optional[bool] = False,
        output_hidden_states: Optional[bool] = False,
        return_dict: Optional[bool] = True,
        training: Optional[bool] = False,
    ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None

        if attention_mask is not None:
            hidden_states = hidden_states * tf.expand_dims(attention_mask, -1)
            attention_mask = _expand_mask(attention_mask)
        else:
            attention_mask = None

        position_embeddings = self.pos_conv_embed(hidden_states)
        hidden_states = hidden_states + position_embeddings
        hidden_states = self.dropout(hidden_states, training=training)

        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = np.random.uniform(0, 1)
            if training and (dropout_probability < self.config.layerdrop):  # skip the layer
                continue

            layer_outputs = layer_module(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                output_attentions=output_attentions,
                training=training,
            )
            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)

        hidden_states = self.layer_norm(hidden_states)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
        return TFBaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )


@keras_serializable
class TFHubertMainLayer(tf.keras.layers.Layer):
    config_class = HubertConfig

    def __init__(self, config: HubertConfig, **kwargs):
        super().__init__(**kwargs)
        self.config = config
        self.feature_extractor = TFHubertFeatureExtractor(config, name="feature_extractor")
        self.feature_projection = TFHubertFeatureProjection(config, name="feature_projection")

        if config.do_stable_layer_norm:
            self.encoder = TFHubertEncoderStableLayerNorm(config, name="encoder")
        else:
            self.encoder = TFHubertEncoder(config, name="encoder")

    def build(self, input_shape: tf.TensorShape):
        self.masked_spec_embed = self.add_weight(
            shape=(self.config.hidden_size,), initializer="uniform", trainable=True, name="masked_spec_embed"
        )

        super().build(input_shape)

    def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor):
        """
        Computes the output length of the convolutional layers
        """

        def _conv_out_length(input_length, kernel_size, stride):
            # 1D convolutional layer output length formula taken
            # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
            return (input_length - kernel_size) // stride + 1

        for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
            input_lengths = _conv_out_length(input_lengths, kernel_size, stride)

        return input_lengths

    def _mask_hidden_states(self, hidden_states: tf.Tensor, mask_time_indices: Optional[tf.Tensor] = None):
        """
        Masks extracted features along time axis and/or along feature axis according to `SpecAugment
        <https://arxiv.org/abs/1904.08779>`__ .
        """
        batch_size, sequence_length, hidden_size = shape_list(hidden_states)

        # `config.apply_spec_augment` can set masking to False
        if not getattr(self.config, "apply_spec_augment", True):
            return hidden_states

        if mask_time_indices is not None:
            # apply SpecAugment along time axis with given mask_time_indices
            hidden_states = tf.where(
                tf.cast(mask_time_indices[:, :, tf.newaxis], tf.bool),
                self.masked_spec_embed[tf.newaxis, tf.newaxis, :],
                hidden_states,
            )

        elif self.config.mask_time_prob > 0:
            # generate indices & apply SpecAugment along time axis
            mask_time_indices = _compute_mask_indices(
                (batch_size, sequence_length),
                mask_prob=self.config.mask_time_prob,
                mask_length=self.config.mask_time_length,
                min_masks=2,
            )
            hidden_states = tf.where(
                tf.cast(mask_time_indices[:, :, tf.newaxis], tf.bool),
                self.masked_spec_embed[tf.newaxis, tf.newaxis, :],
                hidden_states,
            )

        # apply SpecAugment along feature axis
        if self.config.mask_feature_prob > 0:
            mask_feature_indices = _compute_mask_indices(
                (batch_size, hidden_size),
                mask_prob=self.config.mask_feature_prob,
                mask_length=self.config.mask_feature_length,
            )
            hidden_states = tf.where(mask_feature_indices[:, tf.newaxis, :], hidden_states, 0)

        return hidden_states

    def call(
        self,
        input_values: tf.Tensor,
        attention_mask: Optional[tf.Tensor] = None,
        token_type_ids: Optional[tf.Tensor] = None,
        position_ids: Optional[tf.Tensor] = None,
        head_mask: Optional[tf.Tensor] = None,
        inputs_embeds: Optional[tf.Tensor] = None,
        output_attentions: Optional[tf.Tensor] = None,
        output_hidden_states: Optional[tf.Tensor] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
        **kwargs: Any,
    ):
        inputs = input_values_processing(
            func=self.call,
            config=self.config,
            input_values=input_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
            kwargs_call=kwargs,
        )

        hidden_states = self.feature_extractor(
            tf.cast(inputs["input_values"], tf.float32), training=inputs["training"]
        )

        if inputs["attention_mask"] is not None:
            # compute real output lengths according to convolution formula
            output_lengths = self._get_feat_extract_output_lengths(tf.reduce_sum(inputs["attention_mask"], -1))
            attention_mask = tf.sequence_mask(output_lengths, dtype=hidden_states.dtype)

        hidden_states = self.feature_projection(hidden_states, training=inputs["training"])

        mask_time_indices = kwargs.get("mask_time_indices", None)
        if inputs["training"]:
            hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices)

        encoder_outputs = self.encoder(
            hidden_states,
            attention_mask=attention_mask,
            output_attentions=inputs["output_attentions"],
            output_hidden_states=inputs["output_hidden_states"],
            return_dict=inputs["return_dict"],
            training=inputs["training"],
        )
        hidden_states = encoder_outputs[0]

        if not inputs["return_dict"]:
            return (hidden_states,) + encoder_outputs[1:]

        return TFBaseModelOutput(
            last_hidden_state=hidden_states,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


class TFHubertPreTrainedModel(TFPreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = HubertConfig
    base_model_prefix = "hubert"

    @property
    def dummy_inputs(self) -> Dict[str, tf.Tensor]:
        pad_token = 0.0
        input_values = tf.convert_to_tensor(np.random.rand(1, 16000), tf.float32)
        dummy_inputs = {
            "input_values": input_values,
            "attention_mask": tf.cast(tf.not_equal(input_values, pad_token), tf.float32),
        }
        return dummy_inputs

    @tf.function
    def serving(self, inputs):
        output = self.call(input_values=inputs, training=False)

        return self.serving_output(output)


HUBERT_START_DOCSTRING = r"""

    This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the
    generic methods the library implements for all its model (such as downloading or saving, resizing the input
    embeddings, pruning heads etc.)

    This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use
    it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage
    and behavior.

    .. note::

        TF 2.0 models accepts two formats as inputs:

        - having all inputs as keyword arguments (like PyTorch models), or
        - having all inputs as a list, tuple or dict in the first positional arguments.

        This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all
        the tensors in the first argument of the model call function: :obj:`model(inputs)`.

        If you choose this second option, there are three possibilities you can use to gather all the input Tensors in
        the first positional argument :

        - a single Tensor with :obj:`input_values` only and nothing else: :obj:`model(inputs_ids)`
        - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
          :obj:`model([input_values, attention_mask])` or :obj:`model([input_values, attention_mask, token_type_ids])`
        - a dictionary with one or several input Tensors associated to the input names given in the docstring:
          :obj:`model({"input_values": input_values, "token_type_ids": token_type_ids})`

    Args:
        config (:class:`~transformers.HubertConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
            weights.
"""

HUBERT_INPUTS_DOCSTRING = r"""
    Args:
        input_values (:obj:`np.ndarray`, :obj:`tf.Tensor`, :obj:`List[tf.Tensor]` :obj:`Dict[str, tf.Tensor]` or :obj:`Dict[str, np.ndarray]` and each example must have the shape :obj:`({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`~transformers.BertTokenizer`. See
            :func:`transformers.PreTrainedTokenizer.__call__` and :func:`transformers.PreTrainedTokenizer.encode` for
            details.

            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            `What are attention masks? <../glossary.html#attention-mask>`__
        token_type_ids (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
            1]``:

            - 0 corresponds to a `sentence A` token,
            - 1 corresponds to a `sentence B` token.

            `What are token type IDs? <../glossary.html#token-type-ids>`__
        position_ids (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
            config.max_position_embeddings - 1]``.

            `What are position IDs? <../glossary.html#position-ids>`__
        head_mask (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (:obj:`np.ndarray` or :obj:`tf.Tensor` of shape :obj:`({0}, hidden_size)`, `optional`):
            Optionally, instead of passing :obj:`input_values` you can choose to directly pass an embedded
            representation. This is useful if you want more control over how to convert :obj:`input_values` indices
            into associated vectors than the model's internal embedding lookup matrix.
        output_attentions (:obj:`bool`, `optional`):
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
            config will be used instead.
        output_hidden_states (:obj:`bool`, `optional`):
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
            used instead.
        return_dict (:obj:`bool`, `optional`):
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This
            argument can be used in eager mode, in graph mode the value will always be set to True.
        training (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not to use the model in training mode (some modules like dropout modules have different
            behaviors between training and evaluation).
"""


@add_start_docstrings(
    "The bare TFHubert Model transformer outputing raw hidden-states without any specific head on top.",
    HUBERT_START_DOCSTRING,
)
class TFHubertModel(TFHubertPreTrainedModel):
    def __init__(self, config: HubertConfig, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        self.config = config
        self.hubert = TFHubertMainLayer(config, name="hubert")

    @add_start_docstrings_to_model_forward(HUBERT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC)
    def call(
        self,
        input_values: tf.Tensor,
        attention_mask: Optional[tf.Tensor] = None,
        token_type_ids: Optional[tf.Tensor] = None,
        position_ids: Optional[tf.Tensor] = None,
        head_mask: Optional[tf.Tensor] = None,
        inputs_embeds: Optional[tf.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: bool = False,
    ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
        """

        Returns:

        Example::

            >>> from transformers import Wav2Vec2Processor, TFHubertModel
            >>> from datasets import load_dataset
            >>> import soundfile as sf

            >>> processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-base-960h")
            >>> model = TFHubertModel.from_pretrained("facebook/hubert-base-960h")

            >>> def map_to_array(batch):
            ...     speech, _ = sf.read(batch["file"])
            ...     batch["speech"] = speech
            ...     return batch

            >>> ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
            >>> ds = ds.map(map_to_array)

            >>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values  # Batch size 1
            >>> hidden_states = model(input_values).last_hidden_state
        """

        inputs = input_values_processing(
            func=self.call,
            config=self.config,
            input_values=input_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        inputs["output_hidden_states"] = (
            inputs["output_hidden_states"] if inputs["output_hidden_states"] else self.config.output_hidden_states
        )
        inputs["output_attentions"] = (
            inputs["output_attentions"] if inputs["output_attentions"] else self.config.output_attentions
        )
        inputs["return_dict"] = inputs["return_dict"] if inputs["return_dict"] else self.config.return_dict

        outputs = self.hubert(
            input_values=inputs["input_values"],
            attention_mask=inputs["attention_mask"],
            token_type_ids=inputs["token_type_ids"],
            position_ids=inputs["position_ids"],
            head_mask=inputs["head_mask"],
            inputs_embeds=inputs["inputs_embeds"],
            output_attentions=inputs["output_attentions"],
            output_hidden_states=inputs["output_hidden_states"],
            return_dict=inputs["return_dict"],
            training=inputs["training"],
        )

        return outputs

    def serving_output(self, output):
        hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
        attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None

        return TFBaseModelOutput(last_hidden_state=output.last_hidden_state, hidden_states=hs, attentions=attns)


@add_start_docstrings(
    """TFHubert Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC). """,
    HUBERT_START_DOCSTRING,
)
class TFHubertForCTC(TFHubertPreTrainedModel):
    def __init__(self, config: HubertConfig, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)

        self.hubert = TFHubertMainLayer(config, name="hubert")
        self.dropout = tf.keras.layers.Dropout(config.final_dropout)
        self.lm_head = tf.keras.layers.Dense(config.vocab_size, name="lm_head")

    def freeze_feature_extractor(self):
        """
        Calling this function will disable the gradient computation for the feature extractor so that its parameter
        will not be updated during training.
        """
        self.hubert.feature_extractor.trainable = False

    @add_start_docstrings_to_model_forward(HUBERT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=TFCausalLMOutput, config_class=_CONFIG_FOR_DOC)
    def call(
        self,
        input_values: tf.Tensor,
        attention_mask: Optional[tf.Tensor] = None,
        token_type_ids: Optional[tf.Tensor] = None,
        position_ids: Optional[tf.Tensor] = None,
        head_mask: Optional[tf.Tensor] = None,
        inputs_embeds: Optional[tf.Tensor] = None,
        output_attentions: Optional[bool] = None,
        labels: Optional[tf.Tensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: Optional[bool] = False,
    ) -> Union[TFCausalLMOutput, Tuple[tf.Tensor]]:
        r"""
        labels (:obj:`tf.Tensor` or :obj:`np.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
            config.vocab_size]`` (see ``input_values`` docstring) Tokens with indices set to ``-100`` are ignored
            (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``

        Returns:

        Example::

            >>> import tensorflow as tf
            >>> from transformers import Wav2Vec2Processor, TFHubertForCTC
            >>> from datasets import load_dataset
            >>> import soundfile as sf

            >>> processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-base-960h")
            >>> model = TFHubertForCTC.from_pretrained("facebook/hubert-base-960h")

            >>> def map_to_array(batch):
            ...     speech, _ = sf.read(batch["file"])
            ...     batch["speech"] = speech
            ...     return batch

            >>> ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
            >>> ds = ds.map(map_to_array)

            >>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1
            >>> logits = model(input_values).logits >>> predicted_ids = tf.argmax(logits, axis=-1)

            >>> transcription = processor.decode(predicted_ids[0])

            >>> # compute loss
            >>> target_transcription = "A MAN SAID TO THE UNIVERSE SIR I EXIST"

            >>> # wrap processor as target processor to encode labels
            >>> with processor.as_target_processor():
            ...     labels = processor(transcription, return_tensors="tf").input_values

            >>> loss = model(input_values, labels=labels).loss
        """
        inputs = input_values_processing(
            func=self.call,
            config=self.config,
            input_values=input_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        outputs = self.hubert(
            input_values=inputs["input_values"],
            attention_mask=inputs["attention_mask"],
            token_type_ids=inputs["token_type_ids"],
            position_ids=inputs["position_ids"],
            head_mask=inputs["head_mask"],
            inputs_embeds=inputs["inputs_embeds"],
            output_attentions=inputs["output_attentions"],
            output_hidden_states=inputs["output_hidden_states"],
            return_dict=inputs["return_dict"],
            training=inputs["training"],
        )
        hidden_states = outputs[0]
        hidden_states = self.dropout(hidden_states, training=inputs["training"])

        logits = self.lm_head(hidden_states)

        if labels is not None:

            if tf.reduce_max(labels) >= self.config.vocab_size:
                raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")

            attention_mask = (
                inputs["attention_mask"]
                if inputs["attention_mask"] is not None
                else tf.ones_like(inputs["input_values"], dtype=tf.float32)
            )
            input_lengths = self.hubert._get_feat_extract_output_lengths(tf.reduce_sum(attention_mask, axis=-1))

            # assuming that padded tokens are filled with -100
            # when not being attended to
            labels_mask = tf.cast(labels >= 0, tf.int32)
            target_lengths = tf.reduce_sum(labels_mask, axis=-1)

            loss = tf.nn.ctc_loss(
                logits=logits,
                labels=labels,
                logit_length=input_lengths,
                label_length=target_lengths,
                blank_index=self.config.pad_token_id,
                logits_time_major=False,
            )

            if self.config.ctc_loss_reduction == "sum":
                loss = tf.reduce_sum(loss)
            if self.config.ctc_loss_reduction == "mean":
                loss = tf.reduce_mean(loss)
        else:
            loss = None

        if not inputs["return_dict"]:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return TFCausalLMOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def serving_output(self, output: TFCausalLMOutput) -> TFCausalLMOutput:
        hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
        attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
        return TFCausalLMOutput(logits=output.logits, hidden_states=hs, attentions=attns)