Spaces:
Sleeping
Sleeping
File size: 9,492 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# coding=utf-8
# Copyright 2020, Hugging Face
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Funnel Transformer model configuration """
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json",
"funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json",
"funnel-transformer/intermediate": "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json",
"funnel-transformer/intermediate-base": "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json",
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json",
"funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json",
}
class FunnelConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.FunnelModel` or a
:class:`~transformers.TFBertModel`. It is used to instantiate a Funnel Transformer model according to the specified
arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar
configuration to that of the Funnel Transformer `funnel-transformer/small
<https://huggingface.co/funnel-transformer/small>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 30522):
Vocabulary size of the Funnel transformer. Defines the number of different tokens that can be represented
by the :obj:`inputs_ids` passed when calling :class:`~transformers.FunnelModel` or
:class:`~transformers.TFFunnelModel`.
block_sizes (:obj:`List[int]`, `optional`, defaults to :obj:`[4, 4, 4]`):
The sizes of the blocks used in the model.
block_repeats (:obj:`List[int]`, `optional`):
If passed along, each layer of each block is repeated the number of times indicated.
num_decoder_layers (:obj:`int`, `optional`, defaults to 2):
The number of layers in the decoder (when not using the base model).
d_model (:obj:`int`, `optional`, defaults to 768):
Dimensionality of the model's hidden states.
n_head (:obj:`int`, `optional`, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
d_head (:obj:`int`, `optional`, defaults to 64):
Dimensionality of the model's heads.
d_inner (:obj:`int`, `optional`, defaults to 3072):
Inner dimension in the feed-forward blocks.
hidden_act (:obj:`str` or :obj:`callable`, `optional`, defaults to :obj:`"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
hidden_dropout (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for the attention probabilities.
activation_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout probability used between the two layers of the feed-forward blocks.
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (:obj:`int`, `optional`, defaults to 3):
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.FunnelModel` or
:class:`~transformers.TFFunnelModel`.
initializer_range (:obj:`float`, `optional`, defaults to 0.1):
The standard deviation of the `uniform initializer` for initializing all weight matrices in attention
layers.
initializer_std (:obj:`float`, `optional`):
The standard deviation of the `normal initializer` for initializing the embedding matrix and the weight of
linear layers. Will default to 1 for the embedding matrix and the value given by Xavier initialization for
linear layers.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-9):
The epsilon used by the layer normalization layers.
pooling_type (:obj:`str`, `optional`, defaults to :obj:`"mean"`):
Possible values are ``"mean"`` or ``"max"``. The way pooling is performed at the beginning of each block.
attention_type (:obj:`str`, `optional`, defaults to :obj:`"relative_shift"`):
Possible values are ``"relative_shift"`` or ``"factorized"``. The former is faster on CPU/GPU while the
latter is faster on TPU.
separate_cls (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to separate the cls token when applying pooling.
truncate_seq (:obj:`bool`, `optional`, defaults to :obj:`False`):
When using ``separate_cls``, whether or not to truncate the last token when pooling, to avoid getting a
sequence length that is not a multiple of 2.
pool_q_only (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to apply the pooling only to the query or to query, key and values for the attention layers.
"""
model_type = "funnel"
def __init__(
self,
vocab_size=30522,
block_sizes=[4, 4, 4],
block_repeats=None,
num_decoder_layers=2,
d_model=768,
n_head=12,
d_head=64,
d_inner=3072,
hidden_act="gelu_new",
hidden_dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
max_position_embeddings=512,
type_vocab_size=3,
initializer_range=0.1,
initializer_std=None,
layer_norm_eps=1e-9,
pooling_type="mean",
attention_type="relative_shift",
separate_cls=True,
truncate_seq=True,
pool_q_only=True,
**kwargs
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.block_sizes = block_sizes
self.block_repeats = [1] * len(block_sizes) if block_repeats is None else block_repeats
assert len(block_sizes) == len(
self.block_repeats
), "`block_sizes` and `block_repeats` should have the same length."
self.num_decoder_layers = num_decoder_layers
self.d_model = d_model
self.n_head = n_head
self.d_head = d_head
self.d_inner = d_inner
self.hidden_act = hidden_act
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.initializer_std = initializer_std
self.layer_norm_eps = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], f"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported."
self.pooling_type = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], f"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported."
self.attention_type = attention_type
self.separate_cls = separate_cls
self.truncate_seq = truncate_seq
self.pool_q_only = pool_q_only
@property
def hidden_size(self):
return self.d_model
@property
def num_attention_heads(self):
return self.n_head
@property
def num_hidden_layers(self):
return sum(self.block_sizes)
@property
def num_blocks(self):
return len(self.block_sizes)
|