Spaces:
Sleeping
Sleeping
File size: 53,914 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 |
# coding=utf-8
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Original implementation: https://github.com/pytorch/fairseq/tree/master/examples/wmt19
# Authors:
# - @alexeib Alexei Baevski
# - @edunov Sergey Edunov
# - @michaelauli Michael Auli
# - @myleott Myle Ott
# - @nng555 Nathan Ng
# - David Grangier
# - Kyra Yee
#
# Paper: Facebook FAIR's WMT19 News Translation Task Submission https://arxiv.org/abs/1907.06616
#
"""PyTorch Fairseq model, ported from https://github.com/pytorch/fairseq/tree/master/examples/wmt19"""
import math
import random
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import Tensor, nn
from torch.nn import CrossEntropyLoss, LayerNorm
from ...activations import ACT2FN
from ...deepspeed import is_deepspeed_zero3_enabled
from ...file_utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_fsmt import FSMTConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/wmt19-ru-en"
_CONFIG_FOR_DOC = "FSMTConfig"
_TOKENIZER_FOR_DOC = "FSMTTokenizer"
# See all FSMT models at https://huggingface.co/models?filter=fsmt
# Porting notes:
# this one is modeled after BartModel*
#
# Currently only translation (fairseq also has weights for LM)
#
# fairseq provides weights for ru-en, en-ru and de-en, en-de pairs. All have been ported.
# - ru-en, en-ru use asymmetric vocab
# - de-en, en-de use a merged single vocab (but the code works as if they are separate)
#
# Differences with Bart:
# - not using bos token
# - 2 separate vocabs (src and target)
# - embed weights aren't tied
# - uses a model Ensemble (but that part isn't ported/implemented yet) - so we
# aren't getting as good of a BLEU score
# - uses a projection layer at the end of the decoder
# - doesn't use final_logits_bias
# - beam search: stops as soon as num_beams == len(hypos) (whereas transformers
# is not satisfied there and will continue searching until the next cycles
# aren't promising something better), comparing BLEU scores - the transformers
# algorithm is slightly superior, therefore using the latter. But if you want
# to match fairseq outputs, you need to pass ``early_stopping=True`` to ``generate()``.
#
# SinusoidalPositionalEmbedding is slightly different from Bart's - generates
# different embeddings. This implementation is copied verbatim from fairseq with
# some small changes to make it work here.
#
# Other changes:
# - doesn't support use_cache as Bart's version does
#
#
# FSMTConfig changes with BartConfig
#
# Differences with BART:
# - src/tgt vocabs aren't shared
# - token embeddings aren't shared
# - needs a language pair
# - scale_embedding are True
#
# some unused args were removed too
#
#
# TODO:
# - port model ensemble (fs uses 4 model checkpoints)
# - solve beam search discrepancies
# docstyle-ignore
"""
Here is how to compare BLEU scores against fairseq implementation:
# en-ru
export PAIR=en-ru
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
# (fairseq BLEU: 36.4 http://matrix.statmt.org/matrix/output/1914?score_id=37605)
# ru-en
export PAIR=ru-en
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
# (fairseq BLEU: 41.3 http://matrix.statmt.org/matrix/output/1907?run_id=6937)
# de-en
export PAIR=de-en
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
# (fairseq BLEU: 42.3 http://matrix.statmt.org/matrix/output/1902?run_id=6750)
# en-de
export PAIR=en-de
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
# (fairseq BLEU: 43.1 http://matrix.statmt.org/matrix/output/1909?run_id=6862)
"""
FSMT_START_DOCSTRING = r"""
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
pruning heads etc.)
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
general usage and behavior.
Parameters:
config (:class:`~transformers.FSMTConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
weights.
"""
FSMT_GENERATION_EXAMPLE = r"""
Translation example::
from transformers import FSMTTokenizer, FSMTForConditionalGeneration
mname = "facebook/wmt19-ru-en"
model = FSMTForConditionalGeneration.from_pretrained(mname)
tokenizer = FSMTTokenizer.from_pretrained(mname)
src_text = "Машинное обучение - это здорово, не так ли?"
input_ids = tokenizer.encode(src_text, return_tensors='pt')
outputs = model.generate(input_ids, num_beams=5, num_return_sequences=3)
for i, output in enumerate(outputs):
decoded = tokenizer.decode(output, skip_special_tokens=True)
print(f"{i}: {decoded})
# 1: Machine learning is great, isn't it? ...
"""
FSMT_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
IIndices can be obtained using :class:`~transformers.FSTMTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.FSMTTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are decoder input IDs? <../glossary.html#decoder-input-ids>`__
FSMT uses the :obj:`eos_token_id` as the starting token for :obj:`decoder_input_ids` generation. If
:obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see
:obj:`past_key_values`).
decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
also be used by default.
head_mask (:obj:`torch.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in ``[0,
1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (:obj:`Tuple(torch.FloatTensor)`, `optional`):
Tuple consists of (:obj:`last_hidden_state`, `optional`: :obj:`hidden_states`, `optional`:
:obj:`attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)` is a
sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of
the decoder.
past_key_values (:obj:`Tuple(torch.FloatTensor)` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
decoding (see :obj:`past_key_values`).
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
def invert_mask(attention_mask):
"""Turns 1->0, 0->1, False->True, True-> False"""
assert attention_mask.dim() == 2
return attention_mask.eq(0)
def triu_onnx(x, diagonal=0):
l = x.shape[0]
arange = torch.arange(l, device=x.device)
mask = arange.expand(l, l)
arange = arange.unsqueeze(-1)
if diagonal:
arange = arange + diagonal
mask = mask >= arange
return x.masked_fill(mask == 0, 0)
def _prepare_fsmt_decoder_inputs(
config,
input_ids,
decoder_input_ids=None,
decoder_padding_mask=None,
causal_mask_dtype=torch.float32,
):
"""
Prepare masks that ignore padding tokens in the decoder and a causal mask for the decoder if none are provided.
This mimics the default behavior in fairseq. To override it pass in masks. Note: this is not called during
generation
"""
pad_token_id = config.pad_token_id
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(input_ids, pad_token_id)
bsz, tgt_len = decoder_input_ids.size()
if decoder_padding_mask is None:
decoder_padding_mask = make_padding_mask(decoder_input_ids, pad_token_id)
else:
decoder_padding_mask = invert_mask(decoder_padding_mask)
causal_mask = triu_onnx(fill_with_neg_inf(torch.zeros(tgt_len, tgt_len)), 1).to(
dtype=causal_mask_dtype, device=decoder_input_ids.device
)
return decoder_input_ids, decoder_padding_mask, causal_mask
class PretrainedFSMTModel(PreTrainedModel):
config_class = FSMTConfig
base_model_prefix = "model"
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, SinusoidalPositionalEmbedding):
pass
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
}
return dummy_inputs
def _make_linear_from_emb(emb):
vocab_size, emb_size = emb.weight.shape
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
lin_layer.weight.data = emb.weight.data
return lin_layer
# Helper Functions, mostly for making masks
def _check_shapes(shape_1, shape2):
if shape_1 != shape2:
raise AssertionError(f"shape mismatch: {shape_1} != {shape2}")
def shift_tokens_right(input_ids, pad_token_id):
"""Shift input ids one token to the right, and wrap the last non pad token (usually <eos>)."""
prev_output_tokens = input_ids.clone()
index_of_eos = (input_ids.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1)
prev_output_tokens[:, 0] = input_ids.gather(1, index_of_eos).squeeze()
prev_output_tokens[:, 1:] = input_ids[:, :-1]
return prev_output_tokens
def make_padding_mask(input_ids, padding_idx=1):
"""True for pad tokens"""
padding_mask = input_ids.eq(padding_idx)
if not padding_mask.any():
padding_mask = None
return padding_mask
# Helper Modules
class EncoderLayer(nn.Module):
def __init__(self, config: FSMTConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = Attention(self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout)
self.self_attn_layer_norm = LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = LayerNorm(self.embed_dim)
def forward(self, x, encoder_padding_mask, layer_head_mask, output_attentions=False):
"""
Args:
x (:obj:`torch.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_padding_mask (:obj:`torch.ByteTensor`): binary ByteTensor of shape
`(batch, src_len)` where padding elements are indicated by ``1``.
for t_tgt, t_src is excluded (or masked out), =0 means it is
included in attention
layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size
`(config.encoder_attention_heads,)`.
Returns:
encoded output of shape `(seq_len, batch, embed_dim)`
"""
residual = x
x, attn_weights = self.self_attn(
query=x,
key=x,
key_padding_mask=encoder_padding_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.self_attn_layer_norm(x)
residual = x
x = self.activation_fn(self.fc1(x))
x = nn.functional.dropout(x, p=self.activation_dropout, training=self.training)
x = self.fc2(x)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.final_layer_norm(x)
return x, attn_weights
class FSMTEncoder(nn.Module):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
:class:`EncoderLayer`.
Args:
config: FSMTConfig
"""
def __init__(self, config: FSMTConfig, embed_tokens):
super().__init__()
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
self.padding_idx = embed_tokens.padding_idx
self.embed_tokens = embed_tokens
embed_dim = embed_tokens.embedding_dim
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_positions = SinusoidalPositionalEmbedding(
config.max_position_embeddings + self.padding_idx + 1, embed_dim, self.padding_idx
)
self.layers = nn.ModuleList(
[EncoderLayer(config) for _ in range(config.encoder_layers)]
) # type: List[EncoderLayer]
def forward(
self,
input_ids,
attention_mask=None,
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
"""
Args:
input_ids (:obj:`torch.LongTensor`): tokens in the source language of shape
`(batch, src_len)`
attention_mask (:obj:`torch.LongTensor`): indicating which indices are padding tokens
head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
Returns:
BaseModelOutput or Tuple comprised of:
- **x** (:obj:`torch.Tensor`): the last encoder layer's output of shape `(src_len, batch, embed_dim)`
- **encoder_states** (:obj:`Tuple(torch.FloatTensor`)): all intermediate hidden states of shape
`(src_len, batch, embed_dim)`. Only populated if *output_hidden_states:* is True.
- **all_attentions** (:obj:`Tuple(torch.FloatTensor`)): Attention weights for each layer.
During training might not be of length n_layers because of layer dropout.
"""
# check attention mask and invert
if attention_mask is not None:
attention_mask = invert_mask(attention_mask)
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_ids)
x = inputs_embeds + embed_pos
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (
len(self.layers)
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
x = x.transpose(0, 1) # T x B x C -> B x T x C
encoder_states += (x,)
x = x.transpose(0, 1) # B x T x C -> T x B x C
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop): # skip the layer
attn = None
else:
x, attn = encoder_layer(
x,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
if output_attentions:
all_attentions = all_attentions + (attn,)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
if output_hidden_states:
encoder_states += (x,)
if not return_dict:
return tuple(v for v in [x, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(last_hidden_state=x, hidden_states=encoder_states, attentions=all_attentions)
class DecoderLayer(nn.Module):
def __init__(self, config: FSMTConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = Attention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = LayerNorm(self.embed_dim)
self.encoder_attn = Attention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
encoder_decoder_attention=True,
)
self.encoder_attn_layer_norm = LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = LayerNorm(self.embed_dim)
def forward(
self,
x,
encoder_hidden_states,
encoder_attn_mask=None,
layer_state=None,
causal_mask=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
decoder_padding_mask=None,
output_attentions=False,
):
residual = x
if layer_state is None:
layer_state = {}
# Self Attention
x, self_attn_weights = self.self_attn(
query=x,
key=x,
layer_state=layer_state, # adds keys to layer state
key_padding_mask=decoder_padding_mask,
attn_mask=causal_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.self_attn_layer_norm(x)
# Cross attention
residual = x
assert self.encoder_attn.cache_key != self.self_attn.cache_key
x, cross_attn_weights = self.encoder_attn(
query=x,
key=encoder_hidden_states,
key_padding_mask=encoder_attn_mask,
layer_state=layer_state, # mutates layer state
layer_head_mask=cross_attn_layer_head_mask,
output_attentions=output_attentions,
)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.encoder_attn_layer_norm(x)
# Fully Connected
residual = x
x = self.activation_fn(self.fc1(x))
x = nn.functional.dropout(x, p=self.activation_dropout, training=self.training)
x = self.fc2(x)
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.final_layer_norm(x)
return (
x,
self_attn_weights,
layer_state,
cross_attn_weights,
) # layer_state = cache for decoding
class FSMTDecoder(nn.Module):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`DecoderLayer`
Args:
config: FSMTConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: FSMTConfig, embed_tokens: nn.Embedding):
super().__init__()
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = embed_tokens.padding_idx
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = embed_tokens
embed_dim = embed_tokens.embedding_dim
self.embed_positions = SinusoidalPositionalEmbedding(
config.max_position_embeddings + self.padding_idx + 1, embed_dim, self.padding_idx
)
self.layers = nn.ModuleList(
[DecoderLayer(config) for _ in range(config.decoder_layers)]
) # type: List[DecoderLayer]
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(self.embed_tokens.weight, modifier_rank=None):
embed_tokens_weight_shape = self.embed_tokens.weight.shape
else:
embed_tokens_weight_shape = self.embed_tokens.weight.shape
self.output_projection = nn.Linear(embed_tokens_weight_shape[1], embed_tokens_weight_shape[0], bias=False)
self.output_projection.weight = self.embed_tokens.weight
def forward(
self,
input_ids,
encoder_hidden_states,
encoder_padding_mask,
decoder_padding_mask,
decoder_causal_mask,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=False,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
"""
Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al.,
EMNLP 2019).
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch, tgt_len)`):
previous decoder outputs for teacher forcing
encoder_hidden_states: output from the encoder, used for
encoder-side attention
encoder_padding_mask: for ignoring pad tokens
past_key_values (dict or None): dictionary used for storing state during generation
head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
Returns:
BaseModelOutputWithPast or tuple:
- the decoder's features of shape `(batch, tgt_len, embed_dim)`
- the cache
- hidden states
- attentions
"""
# check attention mask and invert
if encoder_padding_mask is not None:
encoder_padding_mask = invert_mask(encoder_padding_mask)
# embed positions
positions = self.embed_positions(input_ids) # , use_cache=use_cache)
if use_cache:
input_ids = input_ids[:, -1:]
positions = positions[:, -1:] # happens after we embed them
# assert input_ids.ne(self.padding_idx).any()
x = self.embed_tokens(input_ids) * self.embed_scale
x += positions
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
# Convert to FSMT output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim)
x = x.transpose(0, 1)
encoder_hidden_states = encoder_hidden_states.transpose(0, 1)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attns = () if output_attentions else None
next_decoder_cache = []
# check if head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
assert attn_mask.size()[0] == (
len(self.layers)
), f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
x = x.transpose(0, 1)
all_hidden_states += (x,)
x = x.transpose(0, 1)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
layer_state = past_key_values[idx] if past_key_values is not None else None
x, layer_self_attn, layer_past, layer_cross_attn = decoder_layer(
x,
encoder_hidden_states,
encoder_attn_mask=encoder_padding_mask,
decoder_padding_mask=decoder_padding_mask,
layer_state=layer_state,
causal_mask=decoder_causal_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None),
output_attentions=output_attentions,
)
if use_cache:
next_decoder_cache.append(layer_past.copy())
if output_attentions:
all_self_attns += (layer_self_attn,)
all_cross_attns += (layer_cross_attn,)
# add hidden states from the last decoder layer
if output_hidden_states:
x = x.transpose(0, 1)
all_hidden_states += (x,)
x = x.transpose(0, 1)
# Convert to standard output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim)
x = x.transpose(0, 1)
encoder_hidden_states = encoder_hidden_states.transpose(0, 1)
x = self.output_projection(x)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v for v in [x, next_cache, all_hidden_states, all_self_attns, all_cross_attns] if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=x,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attns,
)
def _reorder_buffer(attn_cache, new_order):
for k, input_buffer_k in attn_cache.items():
if input_buffer_k is not None:
attn_cache[k] = input_buffer_k.index_select(0, new_order)
return attn_cache
class Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
bias=True,
encoder_decoder_attention=False, # otherwise self_attention
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim ** -0.5
self.encoder_decoder_attention = encoder_decoder_attention
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.cache_key = "encoder_decoder" if self.encoder_decoder_attention else "self"
def _shape(self, tensor, seq_len, bsz):
return tensor.contiguous().view(seq_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
def forward(
self,
query,
key: Optional[Tensor],
key_padding_mask: Optional[Tensor] = None,
layer_state: Optional[Dict[str, Optional[Tensor]]] = None,
attn_mask: Optional[Tensor] = None,
layer_head_mask: Optional[Tensor] = None,
output_attentions=False,
) -> Tuple[Tensor, Optional[Tensor]]:
"""Input shape: Time(SeqLen) x Batch x Channel"""
static_kv: bool = self.encoder_decoder_attention
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
# get here for encoder decoder cause of static_kv
if layer_state is not None: # reuse k,v and encoder_padding_mask
saved_state = layer_state.get(self.cache_key, {})
if "prev_key" in saved_state and static_kv:
# previous time steps are cached - no need to recompute key and value if they are static
key = None
else:
saved_state = None
layer_state = {}
q = self.q_proj(query) * self.scaling
if static_kv:
if key is None:
k = v = None
else:
k = self.k_proj(key)
v = self.v_proj(key)
else:
k = self.k_proj(query)
v = self.v_proj(query)
q = self._shape(q, tgt_len, bsz)
if k is not None:
k = self._shape(k, -1, bsz)
if v is not None:
v = self._shape(v, -1, bsz)
if saved_state is not None:
k, v, key_padding_mask = self._use_saved_state(k, v, saved_state, key_padding_mask, static_kv, bsz)
# Update cache
layer_state[self.cache_key] = {
"prev_key": k.view(bsz, self.num_heads, -1, self.head_dim),
"prev_value": v.view(bsz, self.num_heads, -1, self.head_dim),
"prev_key_padding_mask": key_padding_mask if not static_kv else None,
}
assert k is not None
src_len = k.size(1)
attn_weights = torch.bmm(q, k.transpose(1, 2))
assert attn_weights.size() == (bsz * self.num_heads, tgt_len, src_len)
if attn_mask is not None:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
# This is part of a workaround to get around fork/join parallelism not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
assert key_padding_mask is None or key_padding_mask.size()[:2] == (
bsz,
src_len,
)
if key_padding_mask is not None: # don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
reshaped = key_padding_mask.unsqueeze(1).unsqueeze(2)
attn_weights = attn_weights.masked_fill(reshaped, float("-inf"))
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
assert layer_head_mask.size() == (
self.num_heads,
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# make sure that attn_weights are included in graph
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(
attn_weights,
p=self.dropout,
training=self.training,
)
assert v is not None
attn_output = torch.bmm(attn_probs, v)
assert attn_output.size() == (bsz * self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
def _use_saved_state(self, k, v, saved_state, key_padding_mask, static_kv, bsz):
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if "prev_key" in saved_state:
_prev_key = saved_state["prev_key"]
assert _prev_key is not None
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
assert k is not None
k = torch.cat([prev_key, k], dim=1)
if "prev_value" in saved_state:
_prev_value = saved_state["prev_value"]
assert _prev_value is not None
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
assert v is not None
v = torch.cat([prev_value, v], dim=1)
assert k is not None and v is not None
prev_key_padding_mask: Optional[Tensor] = saved_state.get("prev_key_padding_mask", None)
if prev_key_padding_mask is not None:
if static_kv:
new_key_padding_mask = prev_key_padding_mask
else:
new_key_padding_mask = torch.cat([prev_key_padding_mask, key_padding_mask], dim=1)
else:
new_key_padding_mask = key_padding_mask
return k, v, new_key_padding_mask
def fill_with_neg_inf(t):
"""FP16-compatible function that fills a input_ids with -inf."""
return t.float().fill_(float("-inf")).type_as(t)
# Public API
def _get_shape(t):
return getattr(t, "shape", None)
@add_start_docstrings(
"The bare FSMT Model outputting raw hidden-states without any specific head on top.",
FSMT_START_DOCSTRING,
)
class FSMTModel(PretrainedFSMTModel):
def __init__(self, config: FSMTConfig):
super().__init__(config)
padding_idx = config.pad_token_id
encoder_embed_tokens = nn.Embedding(config.src_vocab_size, config.d_model, padding_idx)
decoder_embed_tokens = nn.Embedding(config.tgt_vocab_size, config.d_model, padding_idx)
self.encoder = FSMTEncoder(config, encoder_embed_tokens)
self.decoder = FSMTDecoder(config, decoder_embed_tokens)
self.init_weights()
@add_start_docstrings_to_model_forward(FSMT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs: Optional[Tuple] = None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
if decoder_input_ids is None:
use_cache = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# make masks if user doesn't supply
if not use_cache:
decoder_input_ids, decoder_padding_mask, causal_mask = _prepare_fsmt_decoder_inputs(
self.config,
input_ids,
decoder_input_ids=decoder_input_ids,
decoder_padding_mask=decoder_attention_mask,
causal_mask_dtype=self.decoder.embed_tokens.weight.dtype,
)
else:
decoder_padding_mask, causal_mask = None, None
assert decoder_input_ids is not None
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=False
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
decoder_input_ids,
encoder_outputs[0],
attention_mask,
decoder_padding_mask,
decoder_causal_mask=causal_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def get_input_embeddings(self):
return self.encoder.embed_tokens
def set_input_embeddings(self, value):
self.encoder.embed_tokens = value
def get_output_embeddings(self):
return self.decoder.embed_tokens
def set_output_embeddings(self, value):
self.decoder.embed_tokens = value
@add_start_docstrings(
"The FSMT Model with a language modeling head. Can be used for summarization.", FSMT_START_DOCSTRING
)
class FSMTForConditionalGeneration(PretrainedFSMTModel):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = [
"model.encoder.embed_positions.weight",
"model.decoder.embed_positions.weight",
]
_keys_to_ignore_on_save = [
"model.encoder.embed_positions.weight",
"model.decoder.embed_positions.weight",
]
def __init__(self, config: FSMTConfig):
super().__init__(config)
base_model = FSMTModel(config)
self.model = base_model
@add_start_docstrings_to_model_forward(FSMT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(FSMT_GENERATION_EXAMPLE)
def forward(
self,
input_ids,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the masked language modeling loss. Indices should either be in ``[0, ...,
config.vocab_size]`` or -100 (see ``input_ids`` docstring). Tokens with indices set to ``-100`` are ignored
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = outputs[0]
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
# TODO(SS): do we need to ignore pad tokens in labels?
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.tgt_vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs
):
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id)
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = []
for layer_past in past:
# get the correct batch idx from decoder layer's batch dim for cross and self-attn
layer_past_new = {
attn_key: _reorder_buffer(attn_cache, beam_idx) for attn_key, attn_cache in layer_past.items()
}
reordered_past.append(layer_past_new)
return reordered_past
def get_encoder(self):
return self.model.encoder
def get_output_embeddings(self):
return self.model.decoder.embed_tokens
def set_output_embeddings(self, value):
self.model.decoder.embed_tokens = value
class SinusoidalPositionalEmbedding(nn.Embedding):
"""
This module produces sinusoidal positional embeddings of any length.
We don't want to save the weight of this embedding since it's not trained (deterministic) and it can be huge.
Padding symbols are ignored.
These embeddings get automatically extended in forward if more positions is needed.
"""
def __init__(self, num_positions, embedding_dim, padding_idx):
self.make_weight(num_positions, embedding_dim, padding_idx)
def make_weight(self, num_positions, embedding_dim, padding_idx):
weight = self.get_embedding(num_positions, embedding_dim, padding_idx)
if not hasattr(self, "weight"):
# in ___init__
super().__init__(num_positions, embedding_dim, padding_idx, _weight=weight)
else:
# in forward
weight = weight.to(self.weight.device)
self.weight = nn.Parameter(weight)
self.weight.detach_()
self.weight.requires_grad = False
@staticmethod
def get_embedding(num_embeddings, embedding_dim, padding_idx):
"""
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
"Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb
@staticmethod
def make_positions(tensor, padding_idx: int):
"""
Replace non-padding symbols with their position numbers.
Position numbers begin at padding_idx+1. Padding symbols are ignored.
"""
# The series of casts and type-conversions here are carefully
# balanced to both work with ONNX export and XLA. In particular XLA
# prefers ints, cumsum defaults to output longs, and ONNX doesn't know
# how to handle the dtype kwarg in cumsum.
mask = tensor.ne(padding_idx).int()
return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx
def forward(
self,
input,
incremental_state: Optional[Any] = None,
timestep: Optional[Tensor] = None,
):
"""Input is expected to be of size [bsz x seqlen]."""
bsz, seq_len = input.shape[:2]
max_pos = self.padding_idx + 1 + seq_len
if max_pos > self.weight.size(0):
# expand embeddings if needed
self.make_weight(max_pos, self.embedding_dim, self.padding_idx)
positions = self.make_positions(input, self.padding_idx)
return super().forward(positions)
|