File size: 53,914 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
# coding=utf-8
# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Original implementation: https://github.com/pytorch/fairseq/tree/master/examples/wmt19
# Authors:
# - @alexeib Alexei Baevski
# - @edunov Sergey Edunov
# - @michaelauli Michael Auli
# - @myleott Myle Ott
# - @nng555 Nathan Ng
# - David Grangier
# - Kyra Yee
#
# Paper: Facebook FAIR's WMT19 News Translation Task Submission https://arxiv.org/abs/1907.06616
#
"""PyTorch Fairseq model, ported from https://github.com/pytorch/fairseq/tree/master/examples/wmt19"""

import math
import random
from typing import Any, Dict, List, Optional, Tuple

import torch
from torch import Tensor, nn
from torch.nn import CrossEntropyLoss, LayerNorm

from ...activations import ACT2FN
from ...deepspeed import is_deepspeed_zero3_enabled
from ...file_utils import (
    add_code_sample_docstrings,
    add_end_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    replace_return_docstrings,
)
from ...modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPastAndCrossAttentions,
    Seq2SeqLMOutput,
    Seq2SeqModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_fsmt import FSMTConfig


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "facebook/wmt19-ru-en"
_CONFIG_FOR_DOC = "FSMTConfig"
_TOKENIZER_FOR_DOC = "FSMTTokenizer"

# See all FSMT models at https://huggingface.co/models?filter=fsmt

# Porting notes:
# this one is modeled after BartModel*
#
# Currently only translation (fairseq also has weights for LM)
#
# fairseq provides weights for ru-en, en-ru and de-en, en-de pairs. All have been ported.
# - ru-en, en-ru use asymmetric vocab
# - de-en, en-de use a merged single vocab (but the code works as if they are separate)
#
# Differences with Bart:
# - not using bos token
# - 2 separate vocabs (src and target)
# - embed weights aren't tied
# - uses a model Ensemble (but that part isn't ported/implemented yet) - so we
#   aren't getting as good of a BLEU score
# - uses a projection layer at the end of the decoder
# - doesn't use final_logits_bias
# - beam search: stops as soon as num_beams == len(hypos) (whereas transformers
#   is not satisfied there and will continue searching until the next cycles
#   aren't promising something better), comparing BLEU scores - the transformers
#   algorithm is slightly superior, therefore using the latter. But if you want
#   to match fairseq outputs, you need to pass ``early_stopping=True`` to ``generate()``.
#
# SinusoidalPositionalEmbedding is slightly different from Bart's - generates
# different embeddings. This implementation is copied verbatim from fairseq with
# some small changes to make it work here.
#
# Other changes:
#  - doesn't support use_cache as Bart's version does
#
#
# FSMTConfig changes with BartConfig
#
#    Differences with BART:
#    - src/tgt vocabs aren't shared
#    - token embeddings aren't shared
#    - needs a language pair
#    - scale_embedding are True
#
#    some unused args were removed too
#
#
# TODO:
# - port model ensemble (fs uses 4 model checkpoints)
# - solve beam search discrepancies
# docstyle-ignore

"""

Here is how to compare BLEU scores against fairseq implementation:

# en-ru

export PAIR=en-ru
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS

# (fairseq BLEU: 36.4 http://matrix.statmt.org/matrix/output/1914?score_id=37605)


# ru-en

export PAIR=ru-en
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS


# (fairseq BLEU: 41.3 http://matrix.statmt.org/matrix/output/1907?run_id=6937)


# de-en

export PAIR=de-en
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=50
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS

# (fairseq BLEU: 42.3 http://matrix.statmt.org/matrix/output/1902?run_id=6750)



# en-de

export PAIR=en-de
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS

# (fairseq BLEU: 43.1 http://matrix.statmt.org/matrix/output/1909?run_id=6862)

"""


FSMT_START_DOCSTRING = r"""

    This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
    methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
    pruning heads etc.)

    This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
    subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
    general usage and behavior.

    Parameters:
        config (:class:`~transformers.FSMTConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
            weights.

"""
FSMT_GENERATION_EXAMPLE = r"""
    Translation example::

        from transformers import FSMTTokenizer, FSMTForConditionalGeneration

        mname = "facebook/wmt19-ru-en"
        model = FSMTForConditionalGeneration.from_pretrained(mname)
        tokenizer = FSMTTokenizer.from_pretrained(mname)

        src_text = "Машинное обучение - это здорово, не так ли?"
        input_ids = tokenizer.encode(src_text, return_tensors='pt')
        outputs = model.generate(input_ids, num_beams=5, num_return_sequences=3)
        for i, output in enumerate(outputs):
            decoded = tokenizer.decode(output, skip_special_tokens=True)
            print(f"{i}: {decoded})
         # 1: Machine learning is great, isn't it? ...

"""

FSMT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            IIndices can be obtained using :class:`~transformers.FSTMTokenizer`. See
            :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
            details.

            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            `What are attention masks? <../glossary.html#attention-mask>`__
        decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
            Indices of decoder input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`~transformers.FSMTTokenizer`. See
            :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
            details.

            `What are decoder input IDs? <../glossary.html#decoder-input-ids>`__

            FSMT uses the :obj:`eos_token_id` as the starting token for :obj:`decoder_input_ids` generation. If
            :obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see
            :obj:`past_key_values`).
        decoder_attention_mask (:obj:`torch.BoolTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
            Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
            also be used by default.
        head_mask (:obj:`torch.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`):
            Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        decoder_head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
            Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`):
            Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in ``[0,
            1]``:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        encoder_outputs (:obj:`Tuple(torch.FloatTensor)`, `optional`):
            Tuple consists of (:obj:`last_hidden_state`, `optional`: :obj:`hidden_states`, `optional`:
            :obj:`attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)` is a
            sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of
            the decoder.
        past_key_values (:obj:`Tuple(torch.FloatTensor)` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
            If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
            (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
            instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
        use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
            If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
            decoding (see :obj:`past_key_values`).
        output_attentions (:obj:`bool`, `optional`):
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`):
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
        return_dict (:obj:`bool`, `optional`):
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""


def invert_mask(attention_mask):
    """Turns 1->0, 0->1, False->True, True-> False"""
    assert attention_mask.dim() == 2
    return attention_mask.eq(0)


def triu_onnx(x, diagonal=0):
    l = x.shape[0]
    arange = torch.arange(l, device=x.device)
    mask = arange.expand(l, l)
    arange = arange.unsqueeze(-1)
    if diagonal:
        arange = arange + diagonal
    mask = mask >= arange
    return x.masked_fill(mask == 0, 0)


def _prepare_fsmt_decoder_inputs(
    config,
    input_ids,
    decoder_input_ids=None,
    decoder_padding_mask=None,
    causal_mask_dtype=torch.float32,
):
    """
    Prepare masks that ignore padding tokens in the decoder and a causal mask for the decoder if none are provided.
    This mimics the default behavior in fairseq. To override it pass in masks. Note: this is not called during
    generation
    """
    pad_token_id = config.pad_token_id
    if decoder_input_ids is None:
        decoder_input_ids = shift_tokens_right(input_ids, pad_token_id)
    bsz, tgt_len = decoder_input_ids.size()
    if decoder_padding_mask is None:
        decoder_padding_mask = make_padding_mask(decoder_input_ids, pad_token_id)
    else:
        decoder_padding_mask = invert_mask(decoder_padding_mask)
    causal_mask = triu_onnx(fill_with_neg_inf(torch.zeros(tgt_len, tgt_len)), 1).to(
        dtype=causal_mask_dtype, device=decoder_input_ids.device
    )
    return decoder_input_ids, decoder_padding_mask, causal_mask


class PretrainedFSMTModel(PreTrainedModel):
    config_class = FSMTConfig
    base_model_prefix = "model"

    def _init_weights(self, module):
        std = self.config.init_std
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, SinusoidalPositionalEmbedding):
            pass
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    @property
    def dummy_inputs(self):
        pad_token = self.config.pad_token_id
        input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
        dummy_inputs = {
            "attention_mask": input_ids.ne(pad_token),
            "input_ids": input_ids,
        }
        return dummy_inputs


def _make_linear_from_emb(emb):
    vocab_size, emb_size = emb.weight.shape
    lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
    lin_layer.weight.data = emb.weight.data
    return lin_layer


# Helper Functions, mostly for making masks
def _check_shapes(shape_1, shape2):
    if shape_1 != shape2:
        raise AssertionError(f"shape mismatch: {shape_1} != {shape2}")


def shift_tokens_right(input_ids, pad_token_id):
    """Shift input ids one token to the right, and wrap the last non pad token (usually <eos>)."""
    prev_output_tokens = input_ids.clone()
    index_of_eos = (input_ids.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1)
    prev_output_tokens[:, 0] = input_ids.gather(1, index_of_eos).squeeze()
    prev_output_tokens[:, 1:] = input_ids[:, :-1]
    return prev_output_tokens


def make_padding_mask(input_ids, padding_idx=1):
    """True for pad tokens"""
    padding_mask = input_ids.eq(padding_idx)
    if not padding_mask.any():
        padding_mask = None
    return padding_mask


# Helper Modules


class EncoderLayer(nn.Module):
    def __init__(self, config: FSMTConfig):
        super().__init__()
        self.embed_dim = config.d_model
        self.self_attn = Attention(self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout)
        self.self_attn_layer_norm = LayerNorm(self.embed_dim)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = LayerNorm(self.embed_dim)

    def forward(self, x, encoder_padding_mask, layer_head_mask, output_attentions=False):
        """
        Args:
            x (:obj:`torch.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
            encoder_padding_mask (:obj:`torch.ByteTensor`): binary ByteTensor of shape
                `(batch, src_len)` where padding elements are indicated by ``1``.
            for t_tgt, t_src is excluded (or masked out), =0 means it is
            included in attention
            layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size
                `(config.encoder_attention_heads,)`.

        Returns:
            encoded output of shape `(seq_len, batch, embed_dim)`
        """
        residual = x
        x, attn_weights = self.self_attn(
            query=x,
            key=x,
            key_padding_mask=encoder_padding_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
        )
        x = nn.functional.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        x = self.self_attn_layer_norm(x)

        residual = x
        x = self.activation_fn(self.fc1(x))
        x = nn.functional.dropout(x, p=self.activation_dropout, training=self.training)
        x = self.fc2(x)
        x = nn.functional.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        x = self.final_layer_norm(x)
        return x, attn_weights


class FSMTEncoder(nn.Module):
    """
    Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
    :class:`EncoderLayer`.

    Args:
        config: FSMTConfig
    """

    def __init__(self, config: FSMTConfig, embed_tokens):
        super().__init__()
        self.dropout = config.dropout
        self.layerdrop = config.encoder_layerdrop
        self.padding_idx = embed_tokens.padding_idx
        self.embed_tokens = embed_tokens
        embed_dim = embed_tokens.embedding_dim
        self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
        self.embed_positions = SinusoidalPositionalEmbedding(
            config.max_position_embeddings + self.padding_idx + 1, embed_dim, self.padding_idx
        )
        self.layers = nn.ModuleList(
            [EncoderLayer(config) for _ in range(config.encoder_layers)]
        )  # type: List[EncoderLayer]

    def forward(
        self,
        input_ids,
        attention_mask=None,
        head_mask=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
    ):
        """
        Args:
            input_ids (:obj:`torch.LongTensor`): tokens in the source language of shape
                `(batch, src_len)`
            attention_mask (:obj:`torch.LongTensor`): indicating which indices are padding tokens
            head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`):
                Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

        Returns:
            BaseModelOutput or Tuple comprised of:

                - **x** (:obj:`torch.Tensor`): the last encoder layer's output of shape `(src_len, batch, embed_dim)`
                - **encoder_states** (:obj:`Tuple(torch.FloatTensor`)): all intermediate hidden states of shape
                  `(src_len, batch, embed_dim)`. Only populated if *output_hidden_states:* is True.
                - **all_attentions** (:obj:`Tuple(torch.FloatTensor`)): Attention weights for each layer.
                During training might not be of length n_layers because of layer dropout.
        """
        # check attention mask and invert
        if attention_mask is not None:
            attention_mask = invert_mask(attention_mask)

        inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
        embed_pos = self.embed_positions(input_ids)
        x = inputs_embeds + embed_pos
        x = nn.functional.dropout(x, p=self.dropout, training=self.training)

        # B x T x C -> T x B x C
        x = x.transpose(0, 1)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            assert head_mask.size()[0] == (
                len(self.layers)
            ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                x = x.transpose(0, 1)  # T x B x C -> B x T x C
                encoder_states += (x,)
                x = x.transpose(0, 1)  # B x T x C -> T x B x C
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):  # skip the layer
                attn = None
            else:
                x, attn = encoder_layer(
                    x,
                    attention_mask,
                    layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                    output_attentions=output_attentions,
                )

            if output_attentions:
                all_attentions = all_attentions + (attn,)

        # T x B x C -> B x T x C
        x = x.transpose(0, 1)

        if output_hidden_states:
            encoder_states += (x,)

        if not return_dict:
            return tuple(v for v in [x, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(last_hidden_state=x, hidden_states=encoder_states, attentions=all_attentions)


class DecoderLayer(nn.Module):
    def __init__(self, config: FSMTConfig):
        super().__init__()
        self.embed_dim = config.d_model

        self.self_attn = Attention(
            embed_dim=self.embed_dim,
            num_heads=config.decoder_attention_heads,
            dropout=config.attention_dropout,
        )
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout

        self.self_attn_layer_norm = LayerNorm(self.embed_dim)
        self.encoder_attn = Attention(
            self.embed_dim,
            config.decoder_attention_heads,
            dropout=config.attention_dropout,
            encoder_decoder_attention=True,
        )
        self.encoder_attn_layer_norm = LayerNorm(self.embed_dim)
        self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
        self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = LayerNorm(self.embed_dim)

    def forward(
        self,
        x,
        encoder_hidden_states,
        encoder_attn_mask=None,
        layer_state=None,
        causal_mask=None,
        layer_head_mask=None,
        cross_attn_layer_head_mask=None,
        decoder_padding_mask=None,
        output_attentions=False,
    ):
        residual = x

        if layer_state is None:
            layer_state = {}

        # Self Attention
        x, self_attn_weights = self.self_attn(
            query=x,
            key=x,
            layer_state=layer_state,  # adds keys to layer state
            key_padding_mask=decoder_padding_mask,
            attn_mask=causal_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
        )
        x = nn.functional.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        x = self.self_attn_layer_norm(x)

        # Cross attention
        residual = x
        assert self.encoder_attn.cache_key != self.self_attn.cache_key
        x, cross_attn_weights = self.encoder_attn(
            query=x,
            key=encoder_hidden_states,
            key_padding_mask=encoder_attn_mask,
            layer_state=layer_state,  # mutates layer state
            layer_head_mask=cross_attn_layer_head_mask,
            output_attentions=output_attentions,
        )
        x = nn.functional.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        x = self.encoder_attn_layer_norm(x)

        # Fully Connected
        residual = x
        x = self.activation_fn(self.fc1(x))
        x = nn.functional.dropout(x, p=self.activation_dropout, training=self.training)
        x = self.fc2(x)
        x = nn.functional.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        x = self.final_layer_norm(x)
        return (
            x,
            self_attn_weights,
            layer_state,
            cross_attn_weights,
        )  # layer_state = cache for decoding


class FSMTDecoder(nn.Module):
    """
    Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`DecoderLayer`

    Args:
        config: FSMTConfig
        embed_tokens (nn.Embedding): output embedding
    """

    def __init__(self, config: FSMTConfig, embed_tokens: nn.Embedding):
        super().__init__()
        self.dropout = config.dropout
        self.layerdrop = config.decoder_layerdrop
        self.padding_idx = embed_tokens.padding_idx
        self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
        self.embed_tokens = embed_tokens
        embed_dim = embed_tokens.embedding_dim
        self.embed_positions = SinusoidalPositionalEmbedding(
            config.max_position_embeddings + self.padding_idx + 1, embed_dim, self.padding_idx
        )
        self.layers = nn.ModuleList(
            [DecoderLayer(config) for _ in range(config.decoder_layers)]
        )  # type: List[DecoderLayer]

        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(self.embed_tokens.weight, modifier_rank=None):
                embed_tokens_weight_shape = self.embed_tokens.weight.shape
        else:
            embed_tokens_weight_shape = self.embed_tokens.weight.shape
        self.output_projection = nn.Linear(embed_tokens_weight_shape[1], embed_tokens_weight_shape[0], bias=False)
        self.output_projection.weight = self.embed_tokens.weight

    def forward(
        self,
        input_ids,
        encoder_hidden_states,
        encoder_padding_mask,
        decoder_padding_mask,
        decoder_causal_mask,
        head_mask=None,
        cross_attn_head_mask=None,
        past_key_values=None,
        use_cache=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
    ):
        """
        Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al.,
        EMNLP 2019).

        Args:
            input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch, tgt_len)`):
                previous decoder outputs for teacher forcing
            encoder_hidden_states: output from the encoder, used for
                encoder-side attention
            encoder_padding_mask: for ignoring pad tokens
            past_key_values (dict or None): dictionary used for storing state during generation
            head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`):
                Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(num_layers, num_heads)`, `optional`):
                Mask to nullify selected heads of the cross-attention modules. Mask values selected in ``[0, 1]``:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

        Returns:
            BaseModelOutputWithPast or tuple:

                - the decoder's features of shape `(batch, tgt_len, embed_dim)`
                - the cache
                - hidden states
                - attentions
        """
        # check attention mask and invert
        if encoder_padding_mask is not None:
            encoder_padding_mask = invert_mask(encoder_padding_mask)

        # embed positions
        positions = self.embed_positions(input_ids)  # , use_cache=use_cache)

        if use_cache:
            input_ids = input_ids[:, -1:]
            positions = positions[:, -1:]  # happens after we embed them
            # assert input_ids.ne(self.padding_idx).any()

        x = self.embed_tokens(input_ids) * self.embed_scale
        x += positions
        x = nn.functional.dropout(x, p=self.dropout, training=self.training)

        # Convert to FSMT output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim)
        x = x.transpose(0, 1)
        encoder_hidden_states = encoder_hidden_states.transpose(0, 1)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_cross_attns = () if output_attentions else None
        next_decoder_cache = []

        # check if head_mask has a correct number of layers specified if desired
        for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
            if attn_mask is not None:
                assert attn_mask.size()[0] == (
                    len(self.layers)
                ), f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
        for idx, decoder_layer in enumerate(self.layers):
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            if output_hidden_states:
                x = x.transpose(0, 1)
                all_hidden_states += (x,)
                x = x.transpose(0, 1)
            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):
                continue

            layer_state = past_key_values[idx] if past_key_values is not None else None

            x, layer_self_attn, layer_past, layer_cross_attn = decoder_layer(
                x,
                encoder_hidden_states,
                encoder_attn_mask=encoder_padding_mask,
                decoder_padding_mask=decoder_padding_mask,
                layer_state=layer_state,
                causal_mask=decoder_causal_mask,
                layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                cross_attn_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None),
                output_attentions=output_attentions,
            )

            if use_cache:
                next_decoder_cache.append(layer_past.copy())

            if output_attentions:
                all_self_attns += (layer_self_attn,)
                all_cross_attns += (layer_cross_attn,)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            x = x.transpose(0, 1)
            all_hidden_states += (x,)
            x = x.transpose(0, 1)

        # Convert to standard output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim)
        x = x.transpose(0, 1)
        encoder_hidden_states = encoder_hidden_states.transpose(0, 1)

        x = self.output_projection(x)

        next_cache = next_decoder_cache if use_cache else None

        if not return_dict:
            return tuple(
                v for v in [x, next_cache, all_hidden_states, all_self_attns, all_cross_attns] if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=x,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attns,
        )


def _reorder_buffer(attn_cache, new_order):
    for k, input_buffer_k in attn_cache.items():
        if input_buffer_k is not None:
            attn_cache[k] = input_buffer_k.index_select(0, new_order)
    return attn_cache


class Attention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        embed_dim,
        num_heads,
        dropout=0.0,
        bias=True,
        encoder_decoder_attention=False,  # otherwise self_attention
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
        self.scaling = self.head_dim ** -0.5

        self.encoder_decoder_attention = encoder_decoder_attention
        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.cache_key = "encoder_decoder" if self.encoder_decoder_attention else "self"

    def _shape(self, tensor, seq_len, bsz):
        return tensor.contiguous().view(seq_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)

    def forward(
        self,
        query,
        key: Optional[Tensor],
        key_padding_mask: Optional[Tensor] = None,
        layer_state: Optional[Dict[str, Optional[Tensor]]] = None,
        attn_mask: Optional[Tensor] = None,
        layer_head_mask: Optional[Tensor] = None,
        output_attentions=False,
    ) -> Tuple[Tensor, Optional[Tensor]]:
        """Input shape: Time(SeqLen) x Batch x Channel"""
        static_kv: bool = self.encoder_decoder_attention
        tgt_len, bsz, embed_dim = query.size()
        assert embed_dim == self.embed_dim
        assert list(query.size()) == [tgt_len, bsz, embed_dim]
        # get here for encoder decoder cause of static_kv
        if layer_state is not None:  # reuse k,v and encoder_padding_mask
            saved_state = layer_state.get(self.cache_key, {})
            if "prev_key" in saved_state and static_kv:
                # previous time steps are cached - no need to recompute key and value if they are static
                key = None
        else:
            saved_state = None
            layer_state = {}

        q = self.q_proj(query) * self.scaling
        if static_kv:
            if key is None:
                k = v = None
            else:
                k = self.k_proj(key)
                v = self.v_proj(key)
        else:
            k = self.k_proj(query)
            v = self.v_proj(query)

        q = self._shape(q, tgt_len, bsz)
        if k is not None:
            k = self._shape(k, -1, bsz)
        if v is not None:
            v = self._shape(v, -1, bsz)

        if saved_state is not None:
            k, v, key_padding_mask = self._use_saved_state(k, v, saved_state, key_padding_mask, static_kv, bsz)

        # Update cache
        layer_state[self.cache_key] = {
            "prev_key": k.view(bsz, self.num_heads, -1, self.head_dim),
            "prev_value": v.view(bsz, self.num_heads, -1, self.head_dim),
            "prev_key_padding_mask": key_padding_mask if not static_kv else None,
        }

        assert k is not None
        src_len = k.size(1)
        attn_weights = torch.bmm(q, k.transpose(1, 2))
        assert attn_weights.size() == (bsz * self.num_heads, tgt_len, src_len)

        if attn_mask is not None:
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        # This is part of a workaround to get around fork/join parallelism not supporting Optional types.
        if key_padding_mask is not None and key_padding_mask.dim() == 0:
            key_padding_mask = None
        assert key_padding_mask is None or key_padding_mask.size()[:2] == (
            bsz,
            src_len,
        )

        if key_padding_mask is not None:  # don't attend to padding symbols
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            reshaped = key_padding_mask.unsqueeze(1).unsqueeze(2)
            attn_weights = attn_weights.masked_fill(reshaped, float("-inf"))
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        if layer_head_mask is not None:
            assert layer_head_mask.size() == (
                self.num_heads,
            ), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if output_attentions:
            # make sure that attn_weights are included in graph
            attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
        else:
            attn_weights_reshaped = None

        attn_probs = nn.functional.dropout(
            attn_weights,
            p=self.dropout,
            training=self.training,
        )

        assert v is not None
        attn_output = torch.bmm(attn_probs, v)
        assert attn_output.size() == (bsz * self.num_heads, tgt_len, self.head_dim)
        attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped

    def _use_saved_state(self, k, v, saved_state, key_padding_mask, static_kv, bsz):
        # saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
        if "prev_key" in saved_state:
            _prev_key = saved_state["prev_key"]
            assert _prev_key is not None
            prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
            if static_kv:
                k = prev_key
            else:
                assert k is not None
                k = torch.cat([prev_key, k], dim=1)
        if "prev_value" in saved_state:
            _prev_value = saved_state["prev_value"]
            assert _prev_value is not None
            prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
            if static_kv:
                v = prev_value
            else:
                assert v is not None
                v = torch.cat([prev_value, v], dim=1)
        assert k is not None and v is not None
        prev_key_padding_mask: Optional[Tensor] = saved_state.get("prev_key_padding_mask", None)
        if prev_key_padding_mask is not None:
            if static_kv:
                new_key_padding_mask = prev_key_padding_mask
            else:
                new_key_padding_mask = torch.cat([prev_key_padding_mask, key_padding_mask], dim=1)
        else:
            new_key_padding_mask = key_padding_mask
        return k, v, new_key_padding_mask


def fill_with_neg_inf(t):
    """FP16-compatible function that fills a input_ids with -inf."""
    return t.float().fill_(float("-inf")).type_as(t)


# Public API
def _get_shape(t):
    return getattr(t, "shape", None)


@add_start_docstrings(
    "The bare FSMT Model outputting raw hidden-states without any specific head on top.",
    FSMT_START_DOCSTRING,
)
class FSMTModel(PretrainedFSMTModel):
    def __init__(self, config: FSMTConfig):
        super().__init__(config)

        padding_idx = config.pad_token_id
        encoder_embed_tokens = nn.Embedding(config.src_vocab_size, config.d_model, padding_idx)
        decoder_embed_tokens = nn.Embedding(config.tgt_vocab_size, config.d_model, padding_idx)

        self.encoder = FSMTEncoder(config, encoder_embed_tokens)
        self.decoder = FSMTDecoder(config, decoder_embed_tokens)

        self.init_weights()

    @add_start_docstrings_to_model_forward(FSMT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=Seq2SeqModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids,
        attention_mask=None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        cross_attn_head_mask=None,
        encoder_outputs: Optional[Tuple] = None,
        past_key_values=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        if decoder_input_ids is None:
            use_cache = False

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # make masks if user doesn't supply
        if not use_cache:
            decoder_input_ids, decoder_padding_mask, causal_mask = _prepare_fsmt_decoder_inputs(
                self.config,
                input_ids,
                decoder_input_ids=decoder_input_ids,
                decoder_padding_mask=decoder_attention_mask,
                causal_mask_dtype=self.decoder.embed_tokens.weight.dtype,
            )
        else:
            decoder_padding_mask, causal_mask = None, None

        assert decoder_input_ids is not None

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                head_mask=head_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=False
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            decoder_input_ids,
            encoder_outputs[0],
            attention_mask,
            decoder_padding_mask,
            decoder_causal_mask=causal_mask,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )

    def get_input_embeddings(self):
        return self.encoder.embed_tokens

    def set_input_embeddings(self, value):
        self.encoder.embed_tokens = value

    def get_output_embeddings(self):
        return self.decoder.embed_tokens

    def set_output_embeddings(self, value):
        self.decoder.embed_tokens = value


@add_start_docstrings(
    "The FSMT Model with a language modeling head. Can be used for summarization.", FSMT_START_DOCSTRING
)
class FSMTForConditionalGeneration(PretrainedFSMTModel):
    base_model_prefix = "model"
    _keys_to_ignore_on_load_missing = [
        "model.encoder.embed_positions.weight",
        "model.decoder.embed_positions.weight",
    ]
    _keys_to_ignore_on_save = [
        "model.encoder.embed_positions.weight",
        "model.decoder.embed_positions.weight",
    ]

    def __init__(self, config: FSMTConfig):
        super().__init__(config)
        base_model = FSMTModel(config)
        self.model = base_model

    @add_start_docstrings_to_model_forward(FSMT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
    @add_end_docstrings(FSMT_GENERATION_EXAMPLE)
    def forward(
        self,
        input_ids,
        attention_mask=None,
        decoder_input_ids=None,
        decoder_attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        cross_attn_head_mask=None,
        encoder_outputs=None,
        past_key_values=None,
        labels=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Labels for computing the masked language modeling loss. Indices should either be in ``[0, ...,
            config.vocab_size]`` or -100 (see ``input_ids`` docstring). Tokens with indices set to ``-100`` are ignored
            (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``.

        Returns:

        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if labels is not None:
            use_cache = False

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            encoder_outputs=encoder_outputs,
            decoder_attention_mask=decoder_attention_mask,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        lm_logits = outputs[0]

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            # TODO(SS): do we need to ignore pad tokens in labels?
            masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.tgt_vocab_size), labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return Seq2SeqLMOutput(
            loss=masked_lm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )

    def prepare_inputs_for_generation(
        self,
        decoder_input_ids,
        past=None,
        attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        cross_attn_head_mask=None,
        use_cache=None,
        encoder_outputs=None,
        **kwargs
    ):
        return {
            "input_ids": None,  # encoder_outputs is defined. input_ids not needed
            "encoder_outputs": encoder_outputs,
            "past_key_values": past,
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
            "head_mask": head_mask,
            "decoder_head_mask": decoder_head_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
            "use_cache": use_cache,  # change this to avoid caching (presumably for debugging)
        }

    def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
        return shift_tokens_right(labels, self.config.pad_token_id)

    @staticmethod
    def _reorder_cache(past, beam_idx):
        reordered_past = []
        for layer_past in past:
            # get the correct batch idx from decoder layer's batch dim for cross and self-attn
            layer_past_new = {
                attn_key: _reorder_buffer(attn_cache, beam_idx) for attn_key, attn_cache in layer_past.items()
            }
            reordered_past.append(layer_past_new)
        return reordered_past

    def get_encoder(self):
        return self.model.encoder

    def get_output_embeddings(self):
        return self.model.decoder.embed_tokens

    def set_output_embeddings(self, value):
        self.model.decoder.embed_tokens = value


class SinusoidalPositionalEmbedding(nn.Embedding):
    """
    This module produces sinusoidal positional embeddings of any length.

    We don't want to save the weight of this embedding since it's not trained (deterministic) and it can be huge.

    Padding symbols are ignored.

    These embeddings get automatically extended in forward if more positions is needed.
    """

    def __init__(self, num_positions, embedding_dim, padding_idx):
        self.make_weight(num_positions, embedding_dim, padding_idx)

    def make_weight(self, num_positions, embedding_dim, padding_idx):
        weight = self.get_embedding(num_positions, embedding_dim, padding_idx)
        if not hasattr(self, "weight"):
            # in ___init__
            super().__init__(num_positions, embedding_dim, padding_idx, _weight=weight)
        else:
            # in forward
            weight = weight.to(self.weight.device)
            self.weight = nn.Parameter(weight)
        self.weight.detach_()
        self.weight.requires_grad = False

    @staticmethod
    def get_embedding(num_embeddings, embedding_dim, padding_idx):
        """
        Build sinusoidal embeddings.

        This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
        "Attention Is All You Need".
        """
        half_dim = embedding_dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
        emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
        if embedding_dim % 2 == 1:
            # zero pad
            emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
        if padding_idx is not None:
            emb[padding_idx, :] = 0
        return emb

    @staticmethod
    def make_positions(tensor, padding_idx: int):
        """
        Replace non-padding symbols with their position numbers.

        Position numbers begin at padding_idx+1. Padding symbols are ignored.
        """
        # The series of casts and type-conversions here are carefully
        # balanced to both work with ONNX export and XLA. In particular XLA
        # prefers ints, cumsum defaults to output longs, and ONNX doesn't know
        # how to handle the dtype kwarg in cumsum.
        mask = tensor.ne(padding_idx).int()
        return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx

    def forward(
        self,
        input,
        incremental_state: Optional[Any] = None,
        timestep: Optional[Tensor] = None,
    ):
        """Input is expected to be of size [bsz x seqlen]."""
        bsz, seq_len = input.shape[:2]
        max_pos = self.padding_idx + 1 + seq_len
        if max_pos > self.weight.size(0):
            # expand embeddings if needed
            self.make_weight(max_pos, self.embedding_dim, self.padding_idx)
        positions = self.make_positions(input, self.padding_idx)
        return super().forward(positions)