File size: 10,332 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" FSMT configuration """


import copy

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)

FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP = {}


class DecoderConfig(PretrainedConfig):
    r"""
    Configuration class for FSMT's decoder specific things. note: this is a private helper class
    """
    model_type = "fsmt_decoder"

    def __init__(self, vocab_size=0, bos_token_id=0):
        super().__init__()
        self.vocab_size = vocab_size
        self.bos_token_id = bos_token_id


class FSMTConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a :class:`~transformers.FSMTModel`. It is used to
    instantiate a FSMT model according to the specified arguments, defining the model architecture.

    Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
    outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.

    Args:
        langs (:obj:`List[str]`):
            A list with source language and target_language (e.g., ['en', 'ru']).
        src_vocab_size (:obj:`int`):
            Vocabulary size of the encoder. Defines the number of different tokens that can be represented by the
            :obj:`inputs_ids` passed to the forward method in the encoder.
        tgt_vocab_size (:obj:`int`):
            Vocabulary size of the decoder. Defines the number of different tokens that can be represented by the
            :obj:`inputs_ids` passed to the forward method in the decoder.
        d_model (:obj:`int`, `optional`, defaults to 1024):
            Dimensionality of the layers and the pooler layer.
        encoder_layers (:obj:`int`, `optional`, defaults to 12):
            Number of encoder layers.
        decoder_layers (:obj:`int`, `optional`, defaults to 12):
            Number of decoder layers.
        encoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
            Number of attention heads for each attention layer in the Transformer decoder.
        decoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        encoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        activation_function (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"relu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string,
            :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
        dropout (:obj:`float`, `optional`, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (:obj:`float`, `optional`, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        max_position_embeddings (:obj:`int`, `optional`, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        init_std (:obj:`float`, `optional`, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        scale_embedding (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Scale embeddings by diving by sqrt(d_model).
        bos_token_id (:obj:`int`, `optional`, defaults to 0)
            Beginning of stream token id.
        pad_token_id (:obj:`int`, `optional`, defaults to 1)
            Padding token id.
        eos_token_id (:obj:`int`, `optional`, defaults to 2)
            End of stream token id.
        decoder_start_token_id (:obj:`int`, `optional`):
            This model starts decoding with :obj:`eos_token_id`
        encoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
            Google "layerdrop arxiv", as its not explainable in one line.
        decoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
            Google "layerdrop arxiv", as its not explainable in one line.
        is_encoder_decoder (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether this is an encoder/decoder model.
        tie_word_embeddings (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether to tie input and output embeddings.
        num_beams (:obj:`int`, `optional`, defaults to 5)
            Number of beams for beam search that will be used by default in the :obj:`generate` method of the model. 1
            means no beam search.
        length_penalty (:obj:`float`, `optional`, defaults to 1)
            Exponential penalty to the length that will be used by default in the :obj:`generate` method of the model.
        early_stopping (:obj:`bool`, `optional`, defaults to :obj:`False`)
            Flag that will be used by default in the :obj:`generate` method of the model. Whether to stop the beam
            search when at least ``num_beams`` sentences are finished per batch or not.
        use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        forced_eos_token_id (:obj:`int`, `optional`, defaults to 2):
            The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to
            :obj:`eos_token_id`.

        Examples::

            >>> from transformers import FSMTConfig, FSMTModel

            >>> config = FSMTConfig.from_pretrained('facebook/wmt19-en-ru')
            >>> model = FSMTModel(config)

    """
    model_type = "fsmt"

    # update the defaults from config file
    def __init__(
        self,
        langs=["en", "de"],
        src_vocab_size=42024,
        tgt_vocab_size=42024,
        activation_function="relu",
        d_model=1024,
        max_length=200,
        max_position_embeddings=1024,
        encoder_ffn_dim=4096,
        encoder_layers=12,
        encoder_attention_heads=16,
        encoder_layerdrop=0.0,
        decoder_ffn_dim=4096,
        decoder_layers=12,
        decoder_attention_heads=16,
        decoder_layerdrop=0.0,
        attention_dropout=0.0,
        dropout=0.1,
        activation_dropout=0.0,
        init_std=0.02,
        decoder_start_token_id=2,
        is_encoder_decoder=True,
        scale_embedding=True,
        tie_word_embeddings=False,
        num_beams=5,
        length_penalty=1.0,
        early_stopping=False,
        use_cache=True,
        pad_token_id=1,
        bos_token_id=0,
        eos_token_id=2,
        forced_eos_token_id=2,
        **common_kwargs
    ):
        if "hidden_size" in common_kwargs:
            raise ValueError("hidden size is called d_model")
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            decoder_start_token_id=decoder_start_token_id,
            is_encoder_decoder=is_encoder_decoder,
            tie_word_embeddings=tie_word_embeddings,
            forced_eos_token_id=forced_eos_token_id,
            **common_kwargs,
        )
        self.langs = langs
        self.src_vocab_size = src_vocab_size
        self.tgt_vocab_size = tgt_vocab_size
        self.d_model = d_model  # encoder_embed_dim and decoder_embed_dim
        self.max_length = max_length

        self.encoder_ffn_dim = encoder_ffn_dim
        self.encoder_layers = self.num_hidden_layers = encoder_layers
        self.encoder_attention_heads = encoder_attention_heads
        self.encoder_layerdrop = encoder_layerdrop
        self.decoder_layerdrop = decoder_layerdrop
        self.decoder_ffn_dim = decoder_ffn_dim
        self.decoder_layers = decoder_layers
        self.decoder_attention_heads = decoder_attention_heads
        self.max_position_embeddings = max_position_embeddings
        self.init_std = init_std  # Normal(0, this parameter)
        self.activation_function = activation_function

        self.num_beams = num_beams
        self.length_penalty = length_penalty
        self.early_stopping = early_stopping

        self.decoder = DecoderConfig(vocab_size=tgt_vocab_size, bos_token_id=eos_token_id)

        self.scale_embedding = scale_embedding  # scale factor will be sqrt(d_model) if True

        # 3 Types of Dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.dropout = dropout

        self.use_cache = use_cache

    @property
    def num_attention_heads(self) -> int:
        return self.encoder_attention_heads

    @property
    def hidden_size(self) -> int:
        return self.d_model

    def to_dict(self):
        """
        Serializes this instance to a Python dictionary. Override the default `to_dict()` from `PretrainedConfig`.

        Returns:
            :obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        output = copy.deepcopy(self.__dict__)
        output["decoder"] = self.decoder.to_dict()
        output["model_type"] = self.__class__.model_type
        return output