Spaces:
Sleeping
Sleeping
File size: 10,332 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" FSMT configuration """
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class DecoderConfig(PretrainedConfig):
r"""
Configuration class for FSMT's decoder specific things. note: this is a private helper class
"""
model_type = "fsmt_decoder"
def __init__(self, vocab_size=0, bos_token_id=0):
super().__init__()
self.vocab_size = vocab_size
self.bos_token_id = bos_token_id
class FSMTConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.FSMTModel`. It is used to
instantiate a FSMT model according to the specified arguments, defining the model architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
langs (:obj:`List[str]`):
A list with source language and target_language (e.g., ['en', 'ru']).
src_vocab_size (:obj:`int`):
Vocabulary size of the encoder. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed to the forward method in the encoder.
tgt_vocab_size (:obj:`int`):
Vocabulary size of the decoder. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed to the forward method in the decoder.
d_model (:obj:`int`, `optional`, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (:obj:`int`, `optional`, defaults to 12):
Number of encoder layers.
decoder_layers (:obj:`int`, `optional`, defaults to 12):
Number of decoder layers.
encoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"relu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
dropout (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
max_position_embeddings (:obj:`int`, `optional`, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
scale_embedding (:obj:`bool`, `optional`, defaults to :obj:`True`):
Scale embeddings by diving by sqrt(d_model).
bos_token_id (:obj:`int`, `optional`, defaults to 0)
Beginning of stream token id.
pad_token_id (:obj:`int`, `optional`, defaults to 1)
Padding token id.
eos_token_id (:obj:`int`, `optional`, defaults to 2)
End of stream token id.
decoder_start_token_id (:obj:`int`, `optional`):
This model starts decoding with :obj:`eos_token_id`
encoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
Google "layerdrop arxiv", as its not explainable in one line.
decoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
Google "layerdrop arxiv", as its not explainable in one line.
is_encoder_decoder (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether this is an encoder/decoder model.
tie_word_embeddings (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to tie input and output embeddings.
num_beams (:obj:`int`, `optional`, defaults to 5)
Number of beams for beam search that will be used by default in the :obj:`generate` method of the model. 1
means no beam search.
length_penalty (:obj:`float`, `optional`, defaults to 1)
Exponential penalty to the length that will be used by default in the :obj:`generate` method of the model.
early_stopping (:obj:`bool`, `optional`, defaults to :obj:`False`)
Flag that will be used by default in the :obj:`generate` method of the model. Whether to stop the beam
search when at least ``num_beams`` sentences are finished per batch or not.
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return the last key/values attentions (not used by all models).
forced_eos_token_id (:obj:`int`, `optional`, defaults to 2):
The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to
:obj:`eos_token_id`.
Examples::
>>> from transformers import FSMTConfig, FSMTModel
>>> config = FSMTConfig.from_pretrained('facebook/wmt19-en-ru')
>>> model = FSMTModel(config)
"""
model_type = "fsmt"
# update the defaults from config file
def __init__(
self,
langs=["en", "de"],
src_vocab_size=42024,
tgt_vocab_size=42024,
activation_function="relu",
d_model=1024,
max_length=200,
max_position_embeddings=1024,
encoder_ffn_dim=4096,
encoder_layers=12,
encoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_ffn_dim=4096,
decoder_layers=12,
decoder_attention_heads=16,
decoder_layerdrop=0.0,
attention_dropout=0.0,
dropout=0.1,
activation_dropout=0.0,
init_std=0.02,
decoder_start_token_id=2,
is_encoder_decoder=True,
scale_embedding=True,
tie_word_embeddings=False,
num_beams=5,
length_penalty=1.0,
early_stopping=False,
use_cache=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
forced_eos_token_id=2,
**common_kwargs
):
if "hidden_size" in common_kwargs:
raise ValueError("hidden size is called d_model")
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
is_encoder_decoder=is_encoder_decoder,
tie_word_embeddings=tie_word_embeddings,
forced_eos_token_id=forced_eos_token_id,
**common_kwargs,
)
self.langs = langs
self.src_vocab_size = src_vocab_size
self.tgt_vocab_size = tgt_vocab_size
self.d_model = d_model # encoder_embed_dim and decoder_embed_dim
self.max_length = max_length
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = self.num_hidden_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.max_position_embeddings = max_position_embeddings
self.init_std = init_std # Normal(0, this parameter)
self.activation_function = activation_function
self.num_beams = num_beams
self.length_penalty = length_penalty
self.early_stopping = early_stopping
self.decoder = DecoderConfig(vocab_size=tgt_vocab_size, bos_token_id=eos_token_id)
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
# 3 Types of Dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.dropout = dropout
self.use_cache = use_cache
@property
def num_attention_heads(self) -> int:
return self.encoder_attention_heads
@property
def hidden_size(self) -> int:
return self.d_model
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default `to_dict()` from `PretrainedConfig`.
Returns:
:obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["decoder"] = self.decoder.to_dict()
output["model_type"] = self.__class__.model_type
return output
|