File size: 40,272 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
 TF 2.0 Flaubert model.
"""

import itertools
import random
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple

import tensorflow as tf

from ...activations_tf import get_tf_activation
from ...file_utils import (
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
)
from ...modeling_tf_outputs import TFBaseModelOutput
from ...modeling_tf_utils import (
    TFPreTrainedModel,
    TFSharedEmbeddings,
    get_initializer,
    input_processing,
    keras_serializable,
    shape_list,
)
from ...utils import logging
from ..xlm.modeling_tf_xlm import (
    TFXLMForMultipleChoice,
    TFXLMForQuestionAnsweringSimple,
    TFXLMForSequenceClassification,
    TFXLMForTokenClassification,
)
from .configuration_flaubert import FlaubertConfig


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "flaubert/flaubert_base_cased"
_CONFIG_FOR_DOC = "FlaubertConfig"
_TOKENIZER_FOR_DOC = "FlaubertTokenizer"

TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    # See all Flaubert models at https://huggingface.co/models?filter=flaubert
]

FLAUBERT_START_DOCSTRING = r"""

    This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the
    generic methods the library implements for all its model (such as downloading or saving, resizing the input
    embeddings, pruning heads etc.)

    This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use
    it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage
    and behavior.

    .. note::

        TF 2.0 models accepts two formats as inputs:

        - having all inputs as keyword arguments (like PyTorch models), or
        - having all inputs as a list, tuple or dict in the first positional arguments.

        This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all
        the tensors in the first argument of the model call function: :obj:`model(inputs)`.

        If you choose this second option, there are three possibilities you can use to gather all the input Tensors in
        the first positional argument :

        - a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)`
        - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
          :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])`
        - a dictionary with one or several input Tensors associated to the input names given in the docstring:
          :obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`

    Parameters:
        config (:class:`~transformers.FlaubertConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
            weights.
"""

FLAUBERT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`~transformers.FlaubertTokenizer`. See
            :func:`transformers.PreTrainedTokenizer.__call__` and :func:`transformers.PreTrainedTokenizer.encode` for
            details.

            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:

            - ``1`` for tokens that are **not masked**,
            - ``0`` for tokens that are **masked**.

            `What are attention masks? <../glossary.html#attention-mask>`__
        langs (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are
            languages ids which can be obtained from the language names by using two conversion mappings provided in
            the configuration of the model (only provided for multilingual models). More precisely, the `language name
            to language id` mapping is in :obj:`model.config.lang2id` (which is a dictionary string to int) and the
            `language id to language name` mapping is in :obj:`model.config.id2lang` (dictionary int to string).

            See usage examples detailed in the :doc:`multilingual documentation <../multilingual>`.
        token_type_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
            1]``:

            - ``0`` corresponds to a `sentence A` token,
            - ``1`` corresponds to a `sentence B` token.

            `What are token type IDs? <../glossary.html#token-type-ids>`__
        position_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
            config.max_position_embeddings - 1]``.

            `What are position IDs? <../glossary.html#position-ids>`__
        lengths (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size,)`, `optional`):
            Length of each sentence that can be used to avoid performing attention on padding token indices. You can
            also use `attention_mask` for the same result (see above), kept here for compatibility Indices selected in
            ``[0, ..., input_ids.size(-1)]``:
        cache (:obj:`Dict[str, tf.Tensor]`, `optional`):
            Dictionary string to ``tf.FloatTensor`` that contains precomputed hidden states (key and values in the
            attention blocks) as computed by the model (see :obj:`cache` output below). Can be used to speed up
            sequential decoding.

            The dictionary object will be modified in-place during the forward pass to add newly computed
            hidden-states.
        head_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:

            - ``1`` indicates the head is **not masked**,
            - ``0`` indicates the head is **masked**.

        inputs_embeds (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
            vectors than the model's internal embedding lookup matrix.
        output_attentions (:obj:`bool`, `optional`):
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
            config will be used instead.
        output_hidden_states (:obj:`bool`, `optional`):
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
            used instead.
        return_dict (:obj:`bool`, `optional`):
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This
            argument can be used in eager mode, in graph mode the value will always be set to True.
        training (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether or not to use the model in training mode (some modules like dropout modules have different
            behaviors between training and evaluation).
"""


def get_masks(slen, lengths, causal, padding_mask=None):
    """
    Generate hidden states mask, and optionally an attention mask.
    """
    bs = shape_list(lengths)[0]
    if padding_mask is not None:
        mask = padding_mask
    else:
        # assert lengths.max().item() <= slen
        alen = tf.range(slen)
        mask = tf.math.less(alen, tf.expand_dims(lengths, axis=1))

    # attention mask is the same as mask, or triangular inferior attention (causal)
    if causal:
        attn_mask = tf.less_equal(
            tf.tile(tf.reshape(alen, (1, 1, slen)), (bs, slen, 1)), tf.reshape(alen, (1, slen, 1))
        )
    else:
        attn_mask = mask

    # sanity check
    # assert shape_list(mask) == [bs, slen]
    if tf.executing_eagerly():
        tf.debugging.assert_equal(shape_list(mask), [bs, slen])
        assert causal is False or shape_list(attn_mask) == [bs, slen, slen]

    return mask, attn_mask


class TFFlaubertPreTrainedModel(TFPreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = FlaubertConfig
    base_model_prefix = "transformer"

    @property
    def dummy_inputs(self):
        # Sometimes XLM has language embeddings so don't forget to build them as well if needed
        inputs_list = tf.constant([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]])
        attns_list = tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
        if self.config.use_lang_emb and self.config.n_langs > 1:
            return {
                "input_ids": inputs_list,
                "attention_mask": attns_list,
                "langs": tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]]),
            }
        else:
            return {"input_ids": inputs_list, "attention_mask": attns_list}


@add_start_docstrings(
    "The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.",
    FLAUBERT_START_DOCSTRING,
)
class TFFlaubertModel(TFFlaubertPreTrainedModel):
    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        self.transformer = TFFlaubertMainLayer(config, name="transformer")

    @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=TFBaseModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def call(
        self,
        input_ids=None,
        attention_mask=None,
        langs=None,
        token_type_ids=None,
        position_ids=None,
        lengths=None,
        cache=None,
        head_mask=None,
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        training=False,
        **kwargs,
    ):
        inputs = input_processing(
            func=self.call,
            config=self.config,
            input_ids=input_ids,
            attention_mask=attention_mask,
            langs=langs,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            lengths=lengths,
            cache=cache,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
            kwargs_call=kwargs,
        )
        outputs = self.transformer(
            input_ids=inputs["input_ids"],
            attention_mask=inputs["attention_mask"],
            langs=inputs["langs"],
            token_type_ids=inputs["token_type_ids"],
            position_ids=inputs["position_ids"],
            lengths=inputs["lengths"],
            cache=inputs["cache"],
            head_mask=inputs["head_mask"],
            inputs_embeds=inputs["inputs_embeds"],
            output_attentions=inputs["output_attentions"],
            output_hidden_states=inputs["output_hidden_states"],
            return_dict=inputs["return_dict"],
            training=inputs["training"],
        )

        return outputs

    # Copied from transformers.models.distilbert.modeling_tf_distilbert.TFDistilBertModel.serving_output
    def serving_output(self, output):
        hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
        attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None

        return TFBaseModelOutput(last_hidden_state=output.last_hidden_state, hidden_states=hs, attentions=attns)


# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMMultiHeadAttention with XLM->Flaubert
class TFFlaubertMultiHeadAttention(tf.keras.layers.Layer):
    NEW_ID = itertools.count()

    def __init__(self, n_heads, dim, config, **kwargs):
        super().__init__(**kwargs)
        self.layer_id = next(TFFlaubertMultiHeadAttention.NEW_ID)
        self.dim = dim
        self.n_heads = n_heads
        self.output_attentions = config.output_attentions
        assert self.dim % self.n_heads == 0

        self.q_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="q_lin")
        self.k_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="k_lin")
        self.v_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="v_lin")
        self.out_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="out_lin")
        self.dropout = tf.keras.layers.Dropout(config.attention_dropout)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        raise NotImplementedError

    def call(self, input, mask, kv, cache, head_mask, output_attentions, training=False):
        """
        Self-attention (if kv is None) or attention over source sentence (provided by kv).
        """
        # Input is (bs, qlen, dim)
        # Mask is (bs, klen) (non-causal) or (bs, klen, klen)
        bs, qlen, dim = shape_list(input)

        if kv is None:
            klen = qlen if cache is None else cache["slen"] + qlen
        else:
            klen = shape_list(kv)[1]

        # assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
        dim_per_head = self.dim // self.n_heads
        mask_reshape = (bs, 1, qlen, klen) if len(shape_list(mask)) == 3 else (bs, 1, 1, klen)

        def shape(x):
            """projection"""
            return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3))

        def unshape(x):
            """compute context"""
            return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head))

        q = shape(self.q_lin(input))  # (bs, n_heads, qlen, dim_per_head)

        if kv is None:
            k = shape(self.k_lin(input))  # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(input))  # (bs, n_heads, qlen, dim_per_head)
        elif cache is None or self.layer_id not in cache:
            k = v = kv
            k = shape(self.k_lin(k))  # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(v))  # (bs, n_heads, qlen, dim_per_head)

        if cache is not None:
            if self.layer_id in cache:
                if kv is None:
                    k_, v_ = cache[self.layer_id]
                    k = tf.concat([k_, k], axis=2)  # (bs, n_heads, klen, dim_per_head)
                    v = tf.concat([v_, v], axis=2)  # (bs, n_heads, klen, dim_per_head)
                else:
                    k, v = cache[self.layer_id]

            cache[self.layer_id] = (k, v)

        f_dim_per_head = tf.cast(dim_per_head, dtype=q.dtype)
        q = tf.multiply(q, tf.math.rsqrt(f_dim_per_head))  # (bs, n_heads, qlen, dim_per_head)
        k = tf.cast(k, dtype=q.dtype)
        scores = tf.matmul(q, k, transpose_b=True)  # (bs, n_heads, qlen, klen)
        mask = tf.reshape(mask, mask_reshape)  # (bs, n_heads, qlen, klen)
        # scores.masked_fill_(mask, -float('inf'))                            # (bs, n_heads, qlen, klen)
        mask = tf.cast(mask, dtype=scores.dtype)
        scores = scores - 1e30 * (1.0 - mask)
        weights = tf.nn.softmax(scores, axis=-1)  # (bs, n_heads, qlen, klen)
        weights = self.dropout(weights, training=training)  # (bs, n_heads, qlen, klen)

        # Mask heads if we want to
        if head_mask is not None:
            weights = weights * head_mask

        context = tf.matmul(weights, v)  # (bs, n_heads, qlen, dim_per_head)
        context = unshape(context)  # (bs, qlen, dim)
        outputs = (self.out_lin(context),)

        if output_attentions:
            outputs = outputs + (weights,)

        return outputs


# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMTransformerFFN
class TFFlaubertTransformerFFN(tf.keras.layers.Layer):
    def __init__(self, in_dim, dim_hidden, out_dim, config, **kwargs):
        super().__init__(**kwargs)

        self.lin1 = tf.keras.layers.Dense(dim_hidden, kernel_initializer=get_initializer(config.init_std), name="lin1")
        self.lin2 = tf.keras.layers.Dense(out_dim, kernel_initializer=get_initializer(config.init_std), name="lin2")
        self.act = get_tf_activation("gelu") if config.gelu_activation else get_tf_activation("relu")
        self.dropout = tf.keras.layers.Dropout(config.dropout)

    def call(self, input, training=False):
        x = self.lin1(input)
        x = self.act(x)
        x = self.lin2(x)
        x = self.dropout(x, training=training)

        return x


@keras_serializable
class TFFlaubertMainLayer(tf.keras.layers.Layer):
    config_class = FlaubertConfig

    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)

        self.config = config
        self.n_heads = config.n_heads
        self.n_langs = config.n_langs
        self.dim = config.emb_dim
        self.hidden_dim = self.dim * 4
        self.n_words = config.n_words
        self.pad_index = config.pad_index
        self.causal = config.causal
        self.n_layers = config.n_layers
        self.use_lang_emb = config.use_lang_emb
        self.layerdrop = getattr(config, "layerdrop", 0.0)
        self.pre_norm = getattr(config, "pre_norm", False)
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
        self.return_dict = config.use_return_dict
        self.max_position_embeddings = config.max_position_embeddings
        self.embed_init_std = config.embed_init_std
        self.dropout = tf.keras.layers.Dropout(config.dropout)
        self.embeddings = TFSharedEmbeddings(
            self.n_words, self.dim, initializer_range=config.embed_init_std, name="embeddings"
        )
        self.layer_norm_emb = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm_emb")
        self.attentions = []
        self.layer_norm1 = []
        self.ffns = []
        self.layer_norm2 = []

        for i in range(self.n_layers):
            self.attentions.append(
                TFFlaubertMultiHeadAttention(self.n_heads, self.dim, config=config, name=f"attentions_._{i}")
            )
            self.layer_norm1.append(
                tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm1_._{i}")
            )
            # if self.is_decoder:
            #     self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
            #     self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
            self.ffns.append(
                TFFlaubertTransformerFFN(self.dim, self.hidden_dim, self.dim, config=config, name=f"ffns_._{i}")
            )
            self.layer_norm2.append(
                tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm2_._{i}")
            )

    def build(self, input_shape):
        with tf.name_scope("position_embeddings"):
            self.position_embeddings = self.add_weight(
                name="embeddings",
                shape=[self.max_position_embeddings, self.dim],
                initializer=get_initializer(self.embed_init_std),
            )

        if self.n_langs > 1 and self.use_lang_emb:
            with tf.name_scope("lang_embeddings"):
                self.lang_embeddings = self.add_weight(
                    name="embeddings",
                    shape=[self.n_langs, self.dim],
                    initializer=get_initializer(self.embed_init_std),
                )

        super().build(input_shape)

    def get_input_embeddings(self):
        return self.embeddings

    def set_input_embeddings(self, value):
        self.embeddings.weight = value
        self.embeddings.vocab_size = shape_list(value)[0]

    def call(
        self,
        input_ids=None,
        attention_mask=None,
        langs=None,
        token_type_ids=None,
        position_ids=None,
        lengths=None,
        cache=None,
        head_mask=None,
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        training=False,
        **kwargs,
    ):
        # removed: src_enc=None, src_len=None
        inputs = input_processing(
            func=self.call,
            config=self.config,
            input_ids=input_ids,
            attention_mask=attention_mask,
            langs=langs,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            lengths=lengths,
            cache=cache,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
            kwargs_call=kwargs,
        )

        if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif inputs["input_ids"] is not None:
            bs, slen = shape_list(inputs["input_ids"])
        elif inputs["inputs_embeds"] is not None:
            bs, slen = shape_list(inputs["inputs_embeds"])[:2]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if inputs["lengths"] is None:
            if inputs["input_ids"] is not None:
                inputs["lengths"] = tf.reduce_sum(
                    tf.cast(tf.not_equal(inputs["input_ids"], self.pad_index), dtype=inputs["input_ids"].dtype), axis=1
                )
            else:
                inputs["lengths"] = tf.convert_to_tensor([slen] * bs)
        # mask = input_ids != self.pad_index

        # check inputs
        # assert shape_list(lengths)[0] == bs
        if tf.executing_eagerly():
            tf.debugging.assert_equal(
                shape_list(inputs["lengths"])[0], bs
            ), f"Expected batch size {shape_list(inputs['lengths'])[0]} and received batch size {bs} mismatched"
        # assert lengths.max().item() <= slen
        # input_ids = input_ids.transpose(0, 1)  # batch size as dimension 0
        # assert (src_enc is None) == (src_len is None)
        # if src_enc is not None:
        #     assert self.is_decoder
        #     assert src_enc.size(0) == bs

        # generate masks
        mask, attn_mask = get_masks(slen, inputs["lengths"], self.causal, padding_mask=inputs["attention_mask"])
        # if self.is_decoder and src_enc is not None:
        #     src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]

        # position_ids
        if inputs["position_ids"] is None:
            inputs["position_ids"] = tf.expand_dims(tf.range(slen), axis=0)
            inputs["position_ids"] = tf.tile(inputs["position_ids"], (bs, 1))

        if tf.executing_eagerly():
            # assert shape_list(position_ids) == [bs, slen]  # (slen, bs)
            tf.debugging.assert_equal(
                shape_list(inputs["position_ids"]), [bs, slen]
            ), f"Position id shape {shape_list(inputs['position_ids'])} and input shape {[bs, slen]} mismatched"
            # position_ids = position_ids.transpose(0, 1)

        # langs
        if inputs["langs"] is not None and tf.executing_eagerly():
            # assert shape_list(langs) == [bs, slen]  # (slen, bs)
            tf.debugging.assert_equal(
                shape_list(inputs["langs"]), [bs, slen]
            ), f"Lang shape {shape_list(inputs['langs'])} and input shape {[bs, slen]} mismatched"
            # langs = langs.transpose(0, 1)

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen]
        if inputs["head_mask"] is not None:
            raise NotImplementedError
        else:
            inputs["head_mask"] = [None] * self.n_layers

        # do not recompute cached elements
        if inputs["cache"] is not None and inputs["input_ids"] is not None:
            _slen = slen - inputs["cache"]["slen"]
            inputs["input_ids"] = inputs["input_ids"][:, -_slen:]
            inputs["position_ids"] = inputs["position_ids"][:, -_slen:]
            if inputs["langs"] is not None:
                inputs["langs"] = inputs["langs"][:, -_slen:]
            mask = mask[:, -_slen:]
            attn_mask = attn_mask[:, -_slen:]

        # embeddings
        if inputs["inputs_embeds"] is None:
            inputs["inputs_embeds"] = self.embeddings(inputs["input_ids"])

        tensor = inputs["inputs_embeds"] + tf.gather(self.position_embeddings, inputs["position_ids"])

        if inputs["langs"] is not None and self.use_lang_emb:
            tensor = tensor + tf.gather(self.lang_embeddings, inputs["langs"])
        if inputs["token_type_ids"] is not None:
            tensor = tensor + self.embeddings(inputs["token_type_ids"])

        tensor = self.layer_norm_emb(tensor)
        tensor = self.dropout(tensor, training=inputs["training"])
        mask = tf.cast(mask, dtype=tensor.dtype)
        tensor = tensor * tf.expand_dims(mask, axis=-1)

        # hidden_states and attentions cannot be None in graph mode.
        hidden_states = () if inputs["output_hidden_states"] else None
        attentions = () if inputs["output_attentions"] else None

        # transformer layers
        for i in range(self.n_layers):
            # LayerDrop
            dropout_probability = random.uniform(0, 1)

            if inputs["training"] and (dropout_probability < self.layerdrop):
                continue

            if inputs["output_hidden_states"]:
                hidden_states = hidden_states + (tensor,)

            # self attention
            if not self.pre_norm:
                attn_outputs = self.attentions[i](
                    tensor,
                    attn_mask,
                    None,
                    inputs["cache"],
                    inputs["head_mask"][i],
                    inputs["output_attentions"],
                    training=inputs["training"],
                )
                attn = attn_outputs[0]

                if inputs["output_attentions"]:
                    attentions = attentions + (attn_outputs[1],)

                attn = self.dropout(attn, training=inputs["training"])
                tensor = tensor + attn
                tensor = self.layer_norm1[i](tensor)
            else:
                tensor_normalized = self.layer_norm1[i](tensor)
                attn_outputs = self.attentions[i](
                    tensor_normalized,
                    attn_mask,
                    None,
                    inputs["cache"],
                    inputs["head_mask"][i],
                    inputs["output_attentions"],
                    training=inputs["training"],
                )
                attn = attn_outputs[0]

                if inputs["output_attentions"]:
                    attentions = attentions + (attn_outputs[1],)

                attn = self.dropout(attn, training=inputs["training"])
                tensor = tensor + attn

            # encoder attention (for decoder only)
            # if self.is_decoder and src_enc is not None:
            #     attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
            #     attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
            #     tensor = tensor + attn
            #     tensor = self.layer_norm15[i](tensor)

            # FFN
            if not self.pre_norm:
                tensor = tensor + self.ffns[i](tensor)
                tensor = self.layer_norm2[i](tensor)
            else:
                tensor_normalized = self.layer_norm2[i](tensor)
                tensor = tensor + self.ffns[i](tensor_normalized)

            tensor = tensor * tf.expand_dims(mask, axis=-1)

        # Add last hidden state
        if inputs["output_hidden_states"]:
            hidden_states = hidden_states + (tensor,)

        # update cache length
        if inputs["cache"] is not None:
            inputs["cache"]["slen"] += tensor.size(1)

        # move back sequence length to dimension 0
        # tensor = tensor.transpose(0, 1)

        if not inputs["return_dict"]:
            return tuple(v for v in [tensor, hidden_states, attentions] if v is not None)

        return TFBaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions)


# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMPredLayer
class TFFlaubertPredLayer(tf.keras.layers.Layer):
    """
    Prediction layer (cross_entropy or adaptive_softmax).
    """

    def __init__(self, config, input_embeddings, **kwargs):
        super().__init__(**kwargs)

        self.asm = config.asm
        self.n_words = config.n_words
        self.pad_index = config.pad_index

        if config.asm is False:
            self.input_embeddings = input_embeddings
        else:
            raise NotImplementedError
            # self.proj = nn.AdaptiveLogSoftmaxWithLoss(
            #     in_features=dim,
            #     n_classes=config.n_words,
            #     cutoffs=config.asm_cutoffs,
            #     div_value=config.asm_div_value,
            #     head_bias=True,  # default is False
            # )

    def build(self, input_shape):
        # The output weights are the same as the input embeddings, but there is an output-only bias for each token.
        self.bias = self.add_weight(shape=(self.n_words,), initializer="zeros", trainable=True, name="bias")

        super().build(input_shape)

    def get_output_embeddings(self):
        return self.input_embeddings

    def set_output_embeddings(self, value):
        self.input_embeddings.weight = value
        self.input_embeddings.vocab_size = shape_list(value)[0]

    def get_bias(self):
        return {"bias": self.bias}

    def set_bias(self, value):
        self.bias = value["bias"]
        self.vocab_size = shape_list(value["bias"])[0]

    def call(self, hidden_states):
        hidden_states = self.input_embeddings(hidden_states, mode="linear")
        hidden_states = hidden_states + self.bias

        return hidden_states


@dataclass
class TFFlaubertWithLMHeadModelOutput(ModelOutput):
    """
    Base class for :class:`~transformers.TFFlaubertWithLMHeadModel` outputs.

    Args:
        logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    logits: tf.Tensor = None
    hidden_states: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[tf.Tensor]] = None


@add_start_docstrings(
    """
    The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input
    embeddings).
    """,
    FLAUBERT_START_DOCSTRING,
)
class TFFlaubertWithLMHeadModel(TFFlaubertPreTrainedModel):
    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        self.transformer = TFFlaubertMainLayer(config, name="transformer")
        self.pred_layer = TFFlaubertPredLayer(config, self.transformer.embeddings, name="pred_layer_._proj")

    def get_lm_head(self):
        return self.pred_layer

    def get_prefix_bias_name(self):
        warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
        return self.name + "/" + self.pred_layer.name

    def prepare_inputs_for_generation(self, inputs, **kwargs):
        mask_token_id = self.config.mask_token_id
        lang_id = self.config.lang_id

        effective_batch_size = inputs.shape[0]
        mask_token = tf.fill((effective_batch_size, 1), 1) * mask_token_id
        inputs = tf.concat([inputs, mask_token], axis=1)

        if lang_id is not None:
            langs = tf.ones_like(inputs) * lang_id
        else:
            langs = None
        return {"input_ids": inputs, "langs": langs}

    @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=TFFlaubertWithLMHeadModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def call(
        self,
        input_ids=None,
        attention_mask=None,
        langs=None,
        token_type_ids=None,
        position_ids=None,
        lengths=None,
        cache=None,
        head_mask=None,
        inputs_embeds=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        training=False,
        **kwargs,
    ):
        inputs = input_processing(
            func=self.call,
            config=self.config,
            input_ids=input_ids,
            attention_mask=attention_mask,
            langs=langs,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            lengths=lengths,
            cache=cache,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
            kwargs_call=kwargs,
        )
        transformer_outputs = self.transformer(
            input_ids=inputs["input_ids"],
            attention_mask=inputs["attention_mask"],
            langs=inputs["langs"],
            token_type_ids=inputs["token_type_ids"],
            position_ids=inputs["position_ids"],
            lengths=inputs["lengths"],
            cache=inputs["cache"],
            head_mask=inputs["head_mask"],
            inputs_embeds=inputs["inputs_embeds"],
            output_attentions=inputs["output_attentions"],
            output_hidden_states=inputs["output_hidden_states"],
            return_dict=inputs["return_dict"],
            training=inputs["training"],
        )
        output = transformer_outputs[0]
        outputs = self.pred_layer(output)

        if not inputs["return_dict"]:
            return (outputs,) + transformer_outputs[1:]

        return TFFlaubertWithLMHeadModelOutput(
            logits=outputs, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions
        )

    def serving_output(self, output):
        hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
        attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None

        return TFFlaubertWithLMHeadModelOutput(logits=output.logits, hidden_states=hs, attentions=attns)


@add_start_docstrings(
    """
    Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output)
    e.g. for GLUE tasks.
    """,
    FLAUBERT_START_DOCSTRING,
)
class TFFlaubertForSequenceClassification(TFXLMForSequenceClassification):
    config_class = FlaubertConfig

    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        self.transformer = TFFlaubertMainLayer(config, name="transformer")


@add_start_docstrings(
    """
    Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
    layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
    FLAUBERT_START_DOCSTRING,
)
class TFFlaubertForQuestionAnsweringSimple(TFXLMForQuestionAnsweringSimple):
    config_class = FlaubertConfig

    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        self.transformer = TFFlaubertMainLayer(config, name="transformer")


@add_start_docstrings(
    """
    Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
    Named-Entity-Recognition (NER) tasks.
    """,
    FLAUBERT_START_DOCSTRING,
)
class TFFlaubertForTokenClassification(TFXLMForTokenClassification):
    config_class = FlaubertConfig

    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        self.transformer = TFFlaubertMainLayer(config, name="transformer")


@add_start_docstrings(
    """
    Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
    softmax) e.g. for RocStories/SWAG tasks.
    """,
    FLAUBERT_START_DOCSTRING,
)
class TFFlaubertForMultipleChoice(TFXLMForMultipleChoice):
    config_class = FlaubertConfig

    def __init__(self, config, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        self.transformer = TFFlaubertMainLayer(config, name="transformer")