Spaces:
Sleeping
Sleeping
File size: 8,932 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# coding=utf-8
# Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Flaubert configuration, based on XLM. """
from ...utils import logging
from ..xlm.configuration_xlm import XLMConfig
logger = logging.get_logger(__name__)
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"flaubert/flaubert_small_cased": "https://huggingface.co/flaubert/flaubert_small_cased/resolve/main/config.json",
"flaubert/flaubert_base_uncased": "https://huggingface.co/flaubert/flaubert_base_uncased/resolve/main/config.json",
"flaubert/flaubert_base_cased": "https://huggingface.co/flaubert/flaubert_base_cased/resolve/main/config.json",
"flaubert/flaubert_large_cased": "https://huggingface.co/flaubert/flaubert_large_cased/resolve/main/config.json",
}
class FlaubertConfig(XLMConfig):
"""
This is the configuration class to store the configuration of a :class:`~transformers.FlaubertModel` or a
:class:`~transformers.TFFlaubertModel`. It is used to instantiate a FlauBERT model according to the specified
arguments, defining the model architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
pre_norm (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to apply the layer normalization before or after the feed forward layer following the attention in
each layer (Vaswani et al., Tensor2Tensor for Neural Machine Translation. 2018)
layerdrop (:obj:`float`, `optional`, defaults to 0.0):
Probability to drop layers during training (Fan et al., Reducing Transformer Depth on Demand with
Structured Dropout. ICLR 2020)
vocab_size (:obj:`int`, `optional`, defaults to 30145):
Vocabulary size of the FlauBERT model. Defines the number of different tokens that can be represented by
the :obj:`inputs_ids` passed when calling :class:`~transformers.FlaubertModel` or
:class:`~transformers.TFFlaubertModel`.
emb_dim (:obj:`int`, `optional`, defaults to 2048):
Dimensionality of the encoder layers and the pooler layer.
n_layer (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (:obj:`int`, `optional`, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
dropout (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for the attention mechanism
gelu_activation (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to use a `gelu` activation instead of `relu`.
sinusoidal_embeddings (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings.
causal (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in
order to only attend to the left-side context instead if a bidirectional context.
asm (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction
layer.
n_langs (:obj:`int`, `optional`, defaults to 1):
The number of languages the model handles. Set to 1 for monolingual models.
use_lang_emb (:obj:`bool`, `optional`, defaults to :obj:`True`)
Whether to use language embeddings. Some models use additional language embeddings, see `the multilingual
models page <http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings>`__ for
information on how to use them.
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
embed_init_std (:obj:`float`, `optional`, defaults to 2048^-0.5):
The standard deviation of the truncated_normal_initializer for initializing the embedding matrices.
init_std (:obj:`int`, `optional`, defaults to 50257):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the
embedding matrices.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
The epsilon used by the layer normalization layers.
bos_index (:obj:`int`, `optional`, defaults to 0):
The index of the beginning of sentence token in the vocabulary.
eos_index (:obj:`int`, `optional`, defaults to 1):
The index of the end of sentence token in the vocabulary.
pad_index (:obj:`int`, `optional`, defaults to 2):
The index of the padding token in the vocabulary.
unk_index (:obj:`int`, `optional`, defaults to 3):
The index of the unknown token in the vocabulary.
mask_index (:obj:`int`, `optional`, defaults to 5):
The index of the masking token in the vocabulary.
is_encoder(:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.
summary_type (:obj:`string`, `optional`, defaults to "first"):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Has to be one of the following options:
- :obj:`"last"`: Take the last token hidden state (like XLNet).
- :obj:`"first"`: Take the first token hidden state (like BERT).
- :obj:`"mean"`: Take the mean of all tokens hidden states.
- :obj:`"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- :obj:`"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (:obj:`bool`, `optional`, defaults to :obj:`True`):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Whether or not to add a projection after the vector extraction.
summary_activation (:obj:`str`, `optional`):
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
Pass :obj:`"tanh"` for a tanh activation to the output, any other value will result in no activation.
summary_proj_to_labels (:obj:`bool`, `optional`, defaults to :obj:`True`):
Used in the sequence classification and multiple choice models.
Whether the projection outputs should have :obj:`config.num_labels` or :obj:`config.hidden_size` classes.
summary_first_dropout (:obj:`float`, `optional`, defaults to 0.1):
Used in the sequence classification and multiple choice models.
The dropout ratio to be used after the projection and activation.
start_n_top (:obj:`int`, `optional`, defaults to 5):
Used in the SQuAD evaluation script.
end_n_top (:obj:`int`, `optional`, defaults to 5):
Used in the SQuAD evaluation script.
mask_token_id (:obj:`int`, `optional`, defaults to 0):
Model agnostic parameter to identify masked tokens when generating text in an MLM context.
lang_id (:obj:`int`, `optional`, defaults to 1):
The ID of the language used by the model. This parameter is used when generating text in a given language.
"""
model_type = "flaubert"
def __init__(self, layerdrop=0.0, pre_norm=False, pad_token_id=2, bos_token_id=0, **kwargs):
"""Constructs FlaubertConfig."""
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, **kwargs)
self.layerdrop = layerdrop
self.pre_norm = pre_norm
|