Spaces:
Sleeping
Sleeping
File size: 20,519 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team, The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for DPR."""
import collections
from typing import List, Optional, Union
from ...file_utils import TensorType, add_end_docstrings, add_start_docstrings
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt",
"facebook/dpr-ctx_encoder-multiset-base": "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt",
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json",
"facebook/dpr-ctx_encoder-multiset-base": "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json",
},
}
QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt",
"facebook/dpr-question_encoder-multiset-base": "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt",
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json",
"facebook/dpr-question_encoder-multiset-base": "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json",
},
}
READER_PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt",
"facebook/dpr-reader-multiset-base": "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt",
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json",
"facebook/dpr-reader-multiset-base": "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json",
},
}
CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
READER_PRETRAINED_INIT_CONFIGURATION = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class DPRContextEncoderTokenizerFast(BertTokenizerFast):
r"""
Construct a "fast" DPRContextEncoder tokenizer (backed by HuggingFace's `tokenizers` library).
:class:`~transformers.DPRContextEncoderTokenizerFast` is identical to :class:`~transformers.BertTokenizerFast` and
runs end-to-end tokenization: punctuation splitting and wordpiece.
Refer to superclass :class:`~transformers.BertTokenizerFast` for usage examples and documentation concerning
parameters.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_init_configuration = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
slow_tokenizer_class = DPRContextEncoderTokenizer
class DPRQuestionEncoderTokenizerFast(BertTokenizerFast):
r"""
Constructs a "fast" DPRQuestionEncoder tokenizer (backed by HuggingFace's `tokenizers` library).
:class:`~transformers.DPRQuestionEncoderTokenizerFast` is identical to :class:`~transformers.BertTokenizerFast` and
runs end-to-end tokenization: punctuation splitting and wordpiece.
Refer to superclass :class:`~transformers.BertTokenizerFast` for usage examples and documentation concerning
parameters.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_init_configuration = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
slow_tokenizer_class = DPRQuestionEncoderTokenizer
DPRSpanPrediction = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
DPRReaderOutput = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
CUSTOM_DPR_READER_DOCSTRING = r"""
Return a dictionary with the token ids of the input strings and other information to give to
:obj:`.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a
sequence of IDs (integers), using the tokenizer and vocabulary. The resulting :obj:`input_ids` is a matrix of size
:obj:`(n_passages, sequence_length)` with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (:obj:`str` or :obj:`List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like :obj:`[questions] * n_passages`. Otherwise you have to specify as many questions as
in :obj:`titles` or :obj:`texts`.
titles (:obj:`str` or :obj:`List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (:obj:`str` or :obj:`List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`False`):
Activates and controls padding. Accepts the following values:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
truncation (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.TruncationStrategy`, `optional`, defaults to :obj:`False`):
Activates and controls truncation. Accepts the following values:
* :obj:`True` or :obj:`'longest_first'`: Truncate to a maximum length specified with the argument
:obj:`max_length` or to the maximum acceptable input length for the model if that argument is not
provided. This will truncate token by token, removing a token from the longest sequence in the pair if a
pair of sequences (or a batch of pairs) is provided.
* :obj:`'only_first'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only truncate
the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
* :obj:`'only_second'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
* :obj:`False` or :obj:`'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence
lengths greater than the model maximum admissible input size).
max_length (:obj:`int`, `optional`):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to :obj:`None`, this will use the predefined model maximum length if a maximum
length is required by one of the truncation/padding parameters. If the model has no specific maximum
input length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`):
If set, will return tensors instead of list of python integers. Acceptable values are:
* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
* :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects.
* :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects.
return_attention_mask (:obj:`bool`, `optional`):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the :obj:`return_outputs` attribute.
`What are attention masks? <../glossary.html#attention-mask>`__
Return:
:obj:`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- ``input_ids``: List of token ids to be fed to a model.
- ``attention_mask``: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(CUSTOM_DPR_READER_DOCSTRING)
class CustomDPRReaderTokenizerMixin:
def __call__(
self,
questions,
titles: Optional[str] = None,
texts: Optional[str] = None,
padding: Union[bool, str] = False,
truncation: Union[bool, str] = False,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: Optional[bool] = None,
**kwargs
) -> BatchEncoding:
if titles is None and texts is None:
return super().__call__(
questions,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
return_attention_mask=return_attention_mask,
**kwargs,
)
elif titles is None or texts is None:
text_pair = titles if texts is None else texts
return super().__call__(
questions,
text_pair,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
return_attention_mask=return_attention_mask,
**kwargs,
)
titles = titles if not isinstance(titles, str) else [titles]
texts = texts if not isinstance(texts, str) else [texts]
n_passages = len(titles)
questions = questions if not isinstance(questions, str) else [questions] * n_passages
assert len(titles) == len(
texts
), f"There should be as many titles than texts but got {len(titles)} titles and {len(texts)} texts."
encoded_question_and_titles = super().__call__(questions, titles, padding=False, truncation=False)["input_ids"]
encoded_texts = super().__call__(texts, add_special_tokens=False, padding=False, truncation=False)["input_ids"]
encoded_inputs = {
"input_ids": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(encoded_question_and_titles, encoded_texts)
]
}
if return_attention_mask is not False:
attention_mask = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
encoded_inputs["attention_mask"] = attention_mask
return self.pad(encoded_inputs, padding=padding, max_length=max_length, return_tensors=return_tensors)
def decode_best_spans(
self,
reader_input: BatchEncoding,
reader_output: DPRReaderOutput,
num_spans: int = 16,
max_answer_length: int = 64,
num_spans_per_passage: int = 4,
) -> List[DPRSpanPrediction]:
"""
Get the span predictions for the extractive Q&A model.
Returns: `List` of `DPRReaderOutput` sorted by descending `(relevance_score, span_score)`. Each
`DPRReaderOutput` is a `Tuple` with:
- **span_score**: ``float`` that corresponds to the score given by the reader for this span compared to
other spans in the same passage. It corresponds to the sum of the start and end logits of the span.
- **relevance_score**: ``float`` that corresponds to the score of the each passage to answer the question,
compared to all the other passages. It corresponds to the output of the QA classifier of the DPRReader.
- **doc_id**: ``int``` the id of the passage.
- ***start_index**: ``int`` the start index of the span (inclusive).
- **end_index**: ``int`` the end index of the span (inclusive).
Examples::
>>> from transformers import DPRReader, DPRReaderTokenizer
>>> tokenizer = DPRReaderTokenizer.from_pretrained('facebook/dpr-reader-single-nq-base')
>>> model = DPRReader.from_pretrained('facebook/dpr-reader-single-nq-base')
>>> encoded_inputs = tokenizer(
... questions=["What is love ?"],
... titles=["Haddaway"],
... texts=["'What Is Love' is a song recorded by the artist Haddaway"],
... return_tensors='pt'
... )
>>> outputs = model(**encoded_inputs)
>>> predicted_spans = tokenizer.decode_best_spans(encoded_inputs, outputs)
>>> print(predicted_spans[0].text) # best span
"""
input_ids = reader_input["input_ids"]
start_logits, end_logits, relevance_logits = reader_output[:3]
n_passages = len(relevance_logits)
sorted_docs = sorted(range(n_passages), reverse=True, key=relevance_logits.__getitem__)
nbest_spans_predictions: List[DPRReaderOutput] = []
for doc_id in sorted_docs:
sequence_ids = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
passage_offset = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
sequence_len = sequence_ids.index(self.pad_token_id)
else:
sequence_len = len(sequence_ids)
best_spans = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len],
end_logits=end_logits[doc_id][passage_offset:sequence_len],
max_answer_length=max_answer_length,
top_spans=num_spans_per_passage,
)
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index],
relevance_score=relevance_logits[doc_id],
doc_id=doc_id,
start_index=start_index,
end_index=end_index,
text=self.decode(sequence_ids[start_index : end_index + 1]),
)
)
if len(nbest_spans_predictions) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def _get_best_spans(
self,
start_logits: List[int],
end_logits: List[int],
max_answer_length: int,
top_spans: int,
) -> List[DPRSpanPrediction]:
"""
Finds the best answer span for the extractive Q&A model for one passage. It returns the best span by descending
`span_score` order and keeping max `top_spans` spans. Spans longer that `max_answer_length` are ignored.
"""
scores = []
for (start_index, start_score) in enumerate(start_logits):
for (answer_length, end_score) in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
scores = sorted(scores, key=lambda x: x[1], reverse=True)
chosen_span_intervals = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]"
length = end_index - start_index + 1
assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}"
if any(
[
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals
]
):
continue
chosen_span_intervals.append((start_index, end_index))
if len(chosen_span_intervals) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(CUSTOM_DPR_READER_DOCSTRING)
class DPRReaderTokenizerFast(CustomDPRReaderTokenizerMixin, BertTokenizerFast):
r"""
Constructs a "fast" DPRReader tokenizer (backed by HuggingFace's `tokenizers` library).
:class:`~transformers.DPRReaderTokenizerFast` is almost identical to :class:`~transformers.BertTokenizerFast` and
runs end-to-end tokenization: punctuation splitting and wordpiece. The difference is that is has three inputs
strings: question, titles and texts that are combined to be fed to the :class:`~transformers.DPRReader` model.
Refer to superclass :class:`~transformers.BertTokenizerFast` for usage examples and documentation concerning
parameters.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = READER_PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_init_configuration = READER_PRETRAINED_INIT_CONFIGURATION
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = DPRReaderTokenizer
|