Spaces:
Sleeping
Sleeping
File size: 28,713 Bytes
2260825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
# coding=utf-8
# Copyright 2018 DPR Authors, The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch DPR model for Open Domain Question Answering."""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from torch import Tensor, nn
from ...file_utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_outputs import BaseModelOutputWithPooling
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from ..bert.modeling_bert import BertModel
from .configuration_dpr import DPRConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DPRConfig"
_CHECKPOINT_FOR_DOC = "facebook/dpr-ctx_encoder-single-nq-base"
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/dpr-ctx_encoder-single-nq-base",
"facebook/dpr-ctx_encoder-multiset-base",
]
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/dpr-question_encoder-single-nq-base",
"facebook/dpr-question_encoder-multiset-base",
]
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/dpr-reader-single-nq-base",
"facebook/dpr-reader-multiset-base",
]
##########
# Outputs
##########
@dataclass
class DPRContextEncoderOutput(ModelOutput):
"""
Class for outputs of :class:`~transformers.DPRQuestionEncoder`.
Args:
pooler_output: (:obj:``torch.FloatTensor`` of shape ``(batch_size, embeddings_size)``):
The DPR encoder outputs the `pooler_output` that corresponds to the context representation. Last layer
hidden-state of the first token of the sequence (classification token) further processed by a Linear layer.
This output is to be used to embed contexts for nearest neighbors queries with questions embeddings.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
pooler_output: torch.FloatTensor
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class DPRQuestionEncoderOutput(ModelOutput):
"""
Class for outputs of :class:`~transformers.DPRQuestionEncoder`.
Args:
pooler_output: (:obj:``torch.FloatTensor`` of shape ``(batch_size, embeddings_size)``):
The DPR encoder outputs the `pooler_output` that corresponds to the question representation. Last layer
hidden-state of the first token of the sequence (classification token) further processed by a Linear layer.
This output is to be used to embed questions for nearest neighbors queries with context embeddings.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
pooler_output: torch.FloatTensor
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class DPRReaderOutput(ModelOutput):
"""
Class for outputs of :class:`~transformers.DPRQuestionEncoder`.
Args:
start_logits: (:obj:``torch.FloatTensor`` of shape ``(n_passages, sequence_length)``):
Logits of the start index of the span for each passage.
end_logits: (:obj:``torch.FloatTensor`` of shape ``(n_passages, sequence_length)``):
Logits of the end index of the span for each passage.
relevance_logits: (:obj:`torch.FloatTensor`` of shape ``(n_passages, )``):
Outputs of the QA classifier of the DPRReader that corresponds to the scores of each passage to answer the
question, compared to all the other passages.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
start_logits: torch.FloatTensor
end_logits: torch.FloatTensor = None
relevance_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class DPREncoder(PreTrainedModel):
base_model_prefix = "bert_model"
def __init__(self, config: DPRConfig):
super().__init__(config)
self.bert_model = BertModel(config)
assert self.bert_model.config.hidden_size > 0, "Encoder hidden_size can't be zero"
self.projection_dim = config.projection_dim
if self.projection_dim > 0:
self.encode_proj = nn.Linear(self.bert_model.config.hidden_size, config.projection_dim)
self.init_weights()
def forward(
self,
input_ids: Tensor,
attention_mask: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = False,
) -> Union[BaseModelOutputWithPooling, Tuple[Tensor, ...]]:
outputs = self.bert_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output, pooled_output = outputs[:2]
pooled_output = sequence_output[:, 0, :]
if self.projection_dim > 0:
pooled_output = self.encode_proj(pooled_output)
if not return_dict:
return (sequence_output, pooled_output) + outputs[2:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@property
def embeddings_size(self) -> int:
if self.projection_dim > 0:
return self.encode_proj.out_features
return self.bert_model.config.hidden_size
def init_weights(self):
self.bert_model.init_weights()
if self.projection_dim > 0:
self.encode_proj.apply(self.bert_model._init_weights)
class DPRSpanPredictor(PreTrainedModel):
base_model_prefix = "encoder"
def __init__(self, config: DPRConfig):
super().__init__(config)
self.encoder = DPREncoder(config)
self.qa_outputs = nn.Linear(self.encoder.embeddings_size, 2)
self.qa_classifier = nn.Linear(self.encoder.embeddings_size, 1)
self.init_weights()
def forward(
self,
input_ids: Tensor,
attention_mask: Tensor,
inputs_embeds: Optional[Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = False,
) -> Union[DPRReaderOutput, Tuple[Tensor, ...]]:
# notations: N - number of questions in a batch, M - number of passages per questions, L - sequence length
n_passages, sequence_length = input_ids.size() if input_ids is not None else inputs_embeds.size()[:2]
# feed encoder
outputs = self.encoder(
input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# compute logits
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
relevance_logits = self.qa_classifier(sequence_output[:, 0, :])
# resize
start_logits = start_logits.view(n_passages, sequence_length)
end_logits = end_logits.view(n_passages, sequence_length)
relevance_logits = relevance_logits.view(n_passages)
if not return_dict:
return (start_logits, end_logits, relevance_logits) + outputs[2:]
return DPRReaderOutput(
start_logits=start_logits,
end_logits=end_logits,
relevance_logits=relevance_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def init_weights(self):
self.encoder.init_weights()
##################
# PreTrainedModel
##################
class DPRPretrainedContextEncoder(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DPRConfig
load_tf_weights = None
base_model_prefix = "ctx_encoder"
_keys_to_ignore_on_load_missing = [r"position_ids"]
def init_weights(self):
self.ctx_encoder.init_weights()
class DPRPretrainedQuestionEncoder(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DPRConfig
load_tf_weights = None
base_model_prefix = "question_encoder"
_keys_to_ignore_on_load_missing = [r"position_ids"]
def init_weights(self):
self.question_encoder.init_weights()
class DPRPretrainedReader(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DPRConfig
load_tf_weights = None
base_model_prefix = "span_predictor"
_keys_to_ignore_on_load_missing = [r"position_ids"]
def init_weights(self):
self.span_predictor.encoder.init_weights()
self.span_predictor.qa_classifier.apply(self.span_predictor.encoder.bert_model._init_weights)
self.span_predictor.qa_outputs.apply(self.span_predictor.encoder.bert_model._init_weights)
###############
# Actual Models
###############
DPR_START_DOCSTRING = r"""
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
pruning heads etc.)
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
general usage and behavior.
Parameters:
config (:class:`~transformers.DPRConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
weights.
"""
DPR_ENCODERS_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. To match pretraining, DPR input sequence should be
formatted with [CLS] and [SEP] tokens as follows:
(a) For sequence pairs (for a pair title+text for example):
::
tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
(b) For single sequences (for a question for example):
::
tokens: [CLS] the dog is hairy . [SEP]
token_type_ids: 0 0 0 0 0 0 0
DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
rather than the left.
Indices can be obtained using :class:`~transformers.DPRTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
1]``:
- 0 corresponds to a `sentence A` token,
- 1 corresponds to a `sentence B` token.
`What are token type IDs? <../glossary.html#token-type-ids>`_
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
DPR_READER_INPUTS_DOCSTRING = r"""
Args:
input_ids: (:obj:`Tuple[torch.LongTensor]` of shapes :obj:`(n_passages, sequence_length)`):
Indices of input sequence tokens in the vocabulary. It has to be a sequence triplet with 1) the question
and 2) the passages titles and 3) the passages texts To match pretraining, DPR :obj:`input_ids` sequence
should be formatted with [CLS] and [SEP] with the format:
``[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>``
DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
rather than the left.
Indices can be obtained using :class:`~transformers.DPRReaderTokenizer`. See this class documentation for
more details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(n_passages, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(n_passages, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
@add_start_docstrings(
"The bare DPRContextEncoder transformer outputting pooler outputs as context representations.",
DPR_START_DOCSTRING,
)
class DPRContextEncoder(DPRPretrainedContextEncoder):
def __init__(self, config: DPRConfig):
super().__init__(config)
self.config = config
self.ctx_encoder = DPREncoder(config)
self.init_weights()
@add_start_docstrings_to_model_forward(DPR_ENCODERS_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DPRContextEncoderOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
) -> Union[DPRContextEncoderOutput, Tuple[Tensor, ...]]:
r"""
Return:
Examples::
>>> from transformers import DPRContextEncoder, DPRContextEncoderTokenizer
>>> tokenizer = DPRContextEncoderTokenizer.from_pretrained('facebook/dpr-ctx_encoder-single-nq-base')
>>> model = DPRContextEncoder.from_pretrained('facebook/dpr-ctx_encoder-single-nq-base')
>>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors='pt')["input_ids"]
>>> embeddings = model(input_ids).pooler_output
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = (
torch.ones(input_shape, device=device)
if input_ids is None
else (input_ids != self.config.pad_token_id)
)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
outputs = self.ctx_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return outputs[1:]
return DPRContextEncoderOutput(
pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
@add_start_docstrings(
"The bare DPRQuestionEncoder transformer outputting pooler outputs as question representations.",
DPR_START_DOCSTRING,
)
class DPRQuestionEncoder(DPRPretrainedQuestionEncoder):
def __init__(self, config: DPRConfig):
super().__init__(config)
self.config = config
self.question_encoder = DPREncoder(config)
self.init_weights()
@add_start_docstrings_to_model_forward(DPR_ENCODERS_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DPRQuestionEncoderOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
) -> Union[DPRQuestionEncoderOutput, Tuple[Tensor, ...]]:
r"""
Return:
Examples::
>>> from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer
>>> tokenizer = DPRQuestionEncoderTokenizer.from_pretrained('facebook/dpr-question_encoder-single-nq-base')
>>> model = DPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base')
>>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors='pt')["input_ids"]
>>> embeddings = model(input_ids).pooler_output
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = (
torch.ones(input_shape, device=device)
if input_ids is None
else (input_ids != self.config.pad_token_id)
)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
outputs = self.question_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return outputs[1:]
return DPRQuestionEncoderOutput(
pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
@add_start_docstrings(
"The bare DPRReader transformer outputting span predictions.",
DPR_START_DOCSTRING,
)
class DPRReader(DPRPretrainedReader):
def __init__(self, config: DPRConfig):
super().__init__(config)
self.config = config
self.span_predictor = DPRSpanPredictor(config)
self.init_weights()
@add_start_docstrings_to_model_forward(DPR_READER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DPRReaderOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
output_attentions: bool = None,
output_hidden_states: bool = None,
return_dict=None,
) -> Union[DPRReaderOutput, Tuple[Tensor, ...]]:
r"""
Return:
Examples::
>>> from transformers import DPRReader, DPRReaderTokenizer
>>> tokenizer = DPRReaderTokenizer.from_pretrained('facebook/dpr-reader-single-nq-base')
>>> model = DPRReader.from_pretrained('facebook/dpr-reader-single-nq-base')
>>> encoded_inputs = tokenizer(
... questions=["What is love ?"],
... titles=["Haddaway"],
... texts=["'What Is Love' is a song recorded by the artist Haddaway"],
... return_tensors='pt'
... )
>>> outputs = model(**encoded_inputs)
>>> start_logits = outputs.stat_logits
>>> end_logits = outputs.end_logits
>>> relevance_logits = outputs.relevance_logits
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
return self.span_predictor(
input_ids,
attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
|