File size: 9,986 Bytes
2260825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# coding=utf-8
# Copyright 2021 Facebook AI Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" DETR model configuration """

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)

DETR_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json",
    # See all DETR models at https://huggingface.co/models?filter=detr
}


class DetrConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a :class:`~transformers.DetrModel`. It is used to
    instantiate a DETR model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the DETR `facebook/detr-resnet-50
    <https://huggingface.co/facebook/detr-resnet-50>`__ architecture.

    Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
    outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.


    Args:
        num_queries (:obj:`int`, `optional`, defaults to 100):
            Number of object queries, i.e. detection slots. This is the maximal number of objects
            :class:`~transformers.DetrModel` can detect in a single image. For COCO, we recommend 100 queries.
        d_model (:obj:`int`, `optional`, defaults to 256):
            Dimension of the layers.
        encoder_layers (:obj:`int`, `optional`, defaults to 6):
            Number of encoder layers.
        decoder_layers (:obj:`int`, `optional`, defaults to 6):
            Number of decoder layers.
        encoder_attention_heads (:obj:`int`, `optional`, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (:obj:`int`, `optional`, defaults to 8):
            Number of attention heads for each attention layer in the Transformer decoder.
        decoder_ffn_dim (:obj:`int`, `optional`, defaults to 2048):
            Dimension of the "intermediate" (often named feed-forward) layer in decoder.
        encoder_ffn_dim (:obj:`int`, `optional`, defaults to 2048):
            Dimension of the "intermediate" (often named feed-forward) layer in decoder.
        activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"relu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string,
            :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
        dropout (:obj:`float`, `optional`, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (:obj:`float`, `optional`, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        init_std (:obj:`float`, `optional`, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        init_xavier_std (:obj:`float`, `optional`, defaults to 1):
            The scaling factor used for the Xavier initialization gain in the HM Attention map module.
        encoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
            The LayerDrop probability for the encoder. See the `LayerDrop paper <see
            https://arxiv.org/abs/1909.11556>`__ for more details.
        decoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
            The LayerDrop probability for the decoder. See the `LayerDrop paper <see
            https://arxiv.org/abs/1909.11556>`__ for more details.
        auxiliary_loss (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
        position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"sine"`):
            Type of position embeddings to be used on top of the image features. One of :obj:`"sine"` or
            :obj:`"learned"`.
        backbone (:obj:`str`, `optional`, defaults to :obj:`"resnet50"`):
            Name of convolutional backbone to use. Supports any convolutional backbone from the timm package. For a
            list of all available models, see `this page
            <https://rwightman.github.io/pytorch-image-models/#load-a-pretrained-model>`__.
        dilation (:obj:`bool`, `optional`, defaults to :obj:`False`):
            Whether to replace stride with dilation in the last convolutional block (DC5).
        class_cost (:obj:`float`, `optional`, defaults to 1):
            Relative weight of the classification error in the Hungarian matching cost.
        bbox_cost (:obj:`float`, `optional`, defaults to 5):
            Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
        giou_cost (:obj:`float`, `optional`, defaults to 2):
            Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
        mask_loss_coefficient (:obj:`float`, `optional`, defaults to 1):
            Relative weight of the Focal loss in the panoptic segmentation loss.
        dice_loss_coefficient (:obj:`float`, `optional`, defaults to 1):
            Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.
        bbox_loss_coefficient (:obj:`float`, `optional`, defaults to 5):
            Relative weight of the L1 bounding box loss in the object detection loss.
        giou_loss_coefficient (:obj:`float`, `optional`, defaults to 2):
            Relative weight of the generalized IoU loss in the object detection loss.
        eos_coefficient (:obj:`float`, `optional`, defaults to 0.1):
            Relative classification weight of the 'no-object' class in the object detection loss.

    Examples::

        >>> from transformers import DetrModel, DetrConfig

        >>> # Initializing a DETR facebook/detr-resnet-50 style configuration
        >>> configuration = DetrConfig()

        >>> # Initializing a model from the facebook/detr-resnet-50 style configuration
        >>> model = DetrModel(configuration)

        >>> # Accessing the model configuration
        >>> configuration = model.config
    """
    model_type = "detr"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        num_queries=100,
        max_position_embeddings=1024,
        encoder_layers=6,
        encoder_ffn_dim=2048,
        encoder_attention_heads=8,
        decoder_layers=6,
        decoder_ffn_dim=2048,
        decoder_attention_heads=8,
        encoder_layerdrop=0.0,
        decoder_layerdrop=0.0,
        is_encoder_decoder=True,
        activation_function="relu",
        d_model=256,
        dropout=0.1,
        attention_dropout=0.0,
        activation_dropout=0.0,
        init_std=0.02,
        init_xavier_std=1.0,
        classifier_dropout=0.0,
        scale_embedding=False,
        auxiliary_loss=False,
        position_embedding_type="sine",
        backbone="resnet50",
        dilation=False,
        class_cost=1,
        bbox_cost=5,
        giou_cost=2,
        mask_loss_coefficient=1,
        dice_loss_coefficient=1,
        bbox_loss_coefficient=5,
        giou_loss_coefficient=2,
        eos_coefficient=0.1,
        **kwargs
    ):
        super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)

        self.num_queries = num_queries
        self.max_position_embeddings = max_position_embeddings
        self.d_model = d_model
        self.encoder_ffn_dim = encoder_ffn_dim
        self.encoder_layers = encoder_layers
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_ffn_dim = decoder_ffn_dim
        self.decoder_layers = decoder_layers
        self.decoder_attention_heads = decoder_attention_heads
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.activation_function = activation_function
        self.init_std = init_std
        self.init_xavier_std = init_xavier_std
        self.encoder_layerdrop = encoder_layerdrop
        self.decoder_layerdrop = decoder_layerdrop
        self.num_hidden_layers = encoder_layers
        self.scale_embedding = scale_embedding  # scale factor will be sqrt(d_model) if True
        self.auxiliary_loss = auxiliary_loss
        self.position_embedding_type = position_embedding_type
        self.backbone = backbone
        self.dilation = dilation
        # Hungarian matcher
        self.class_cost = class_cost
        self.bbox_cost = bbox_cost
        self.giou_cost = giou_cost
        # Loss coefficients
        self.mask_loss_coefficient = mask_loss_coefficient
        self.dice_loss_coefficient = dice_loss_coefficient
        self.bbox_loss_coefficient = bbox_loss_coefficient
        self.giou_loss_coefficient = giou_loss_coefficient
        self.eos_coefficient = eos_coefficient

    @property
    def num_attention_heads(self) -> int:
        return self.encoder_attention_heads

    @property
    def hidden_size(self) -> int:
        return self.d_model